摘要:
A phosphor ceramic includes at least one fluorescent layer that is capable of emitting fluorescent light; and at least one non-fluorescent layer that does not emit fluorescent light and is laminated onto the fluorescent layer.
摘要:
Disclosed herein are phosphor compositions which can exhibit a broad emission spectrum and improved color rendering index (CRI) relative to conventional phosphor materials. The phosphor compositions may, in some embodiments, be represented by the Formula I: (RE2−x+yCexAk1−y)(MG4−z−rSirMnz)(Si1−ePe)O12−rNr, wherein RE comprises at least one rare earth metal; Ak comprises at least one alkaline earth metal; MG comprises at least one main group element; x is greater than 0 and less than or equal to 0.2; y is less than 1; z is greater than 0 and less than or equal to 0.8; e is about 0 or less than or equal to 0.16; r is about 0 or less than or equal to 1; and z is about the sum of e and y. Also disclosed herein are lighting apparatuses including the phosphor compositions, as well as methods of making and using the phosphor compositions.
摘要翻译:本文公开了相对于常规磷光体材料可以显示出宽的发射光谱和改进的显色指数(CRI)的荧光体组合物。 在一些实施方案中,荧光体组合物可以由式I表示:(RE 2-x + yCexAk 1-y)(MG 4 -z-z -Sr M 1 z)(Si 1-e P e)O 12 -r N r,其中RE包含至少一种稀土金属 ; Ak包含至少一种碱土金属; MG包括至少一个主组元素; x大于0且小于或等于0.2; y小于1; z大于0且小于或等于0.8; e为约0或小于或等于0.16; r为0或小于或等于1; z约为e和y之和。 本文还公开了包括磷光体组合物的照明装置,以及制造和使用荧光体组合物的方法。
摘要:
Disclosed herein are emissive ceramic materials having a dopant concentration gradient along a thickness of a yttrium aluminum garnet (YAG) region. The dopant concentration gradient may include a maximum dopant concentration, a half-maximum dopant concentration, and a slope at or near the half-maximum dopant concentration. The emissive ceramics may, in some embodiments, exhibit high internal quantum efficiencies (IQE). The emissive ceramics may, in some embodiments, include porous regions. Also disclosed herein are methods of make the emissive ceramic by sintering an assembly having doped and non-doped layers.
摘要:
Some embodiments disclosed herein include a lighting apparatus having a composite. The composite may include a first emissive layer and a second emissive layer. The first emissive layer may include a first garnet phosphor having a common dopant. The second emissive layer may include a second garnet phosphor having the common dopant. In some embodiments, the first emissive layer and the second emissive layer are fixed together. Some embodiments disclosed herein include efficient and economic methods of making the composite. The method may include, in some embodiments, sintering an assembly that includes pre-cursor materials for the first emissive layer and the second emissive layer.
摘要:
Disclosed herein is a method of increasing the luminescence efficiency of a translucent phosphor ceramic. Other embodiments are methods of manufacturing a phosphor translucent ceramic having increased luminescence. Another embodiment is a light emitting device comprising a phosphor translucent ceramic made by one of these methods.
摘要:
Disclosed herein are emissive ceramic materials having a dopant concentration gradient along a thickness of a yttrium aluminum garnet (YAG) region. The dopant concentration gradient may include a maximum dopant concentration, a half-maximum dopant concentration, and a slope at or near the half-maximum dopant concentration. The emissive ceramics may, in some embodiments, exhibit high internal quantum efficiencies (IQE). The emissive ceramics may, in some embodiments, include porous regions. Also disclosed herein are methods of make the emissive ceramic by sintering an assembly having doped and non-doped layers.
摘要:
A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
摘要:
Some embodiments disclosed herein are related to methods of preparing a nanoparticle composition comprising: providing an aerosol comprising a plurality of droplets of a precursor solution comprising at least one nanoparticle precursor and an expansive component; passing the aerosol through a plasma; and collecting a nanoparticle composition product from the carrier gas which has exited the plasma. Some embodiments relate to nanoparticle compositions provided by this process. Some embodiments relate to light-emitting diodes or light emitting devices comprising these compositions.
摘要:
Disclosed herein are phosphor compositions having high gadolinium concentrations. Some embodiments include a thermally stable ceramic body comprising an emissive layer, wherein said emissive layer comprises a compound represented by the formula (A1-x-zGdxDz)3B5O12, wherein: D is a first dopant selected from the group consisting of Nd, Er, Eu, Mn, Cr, Yb, Sm, Tb, Ce, Pr, Dy, Ho, Lu and combinations thereof; A is selected from the group consisting of Y, Lu, Ca, La, Tb, and combinations thereof; B is selected from the group consisting of Al, Mg, Si, Ga, In, and combinations thereof; x is in the range of about 0.20 to about 0.80; and z is in the range of about 0.001 to about 0.10. Also disclosed are thermally stable ceramic bodies that can include the composition of formula I. Methods of making the ceramic body and a lighting device including the ceramic body are also disclosed.
摘要:
Disclosed herein are a laminated composite and process for making the same. The laminated composite includes at least one wavelength-converting layer and at least one non-emissive layer, wherein a vertical relief gap pattern defines the composite into a plurality of discrete separable portions, and the discrete separable portions are breakably joined by a non-emissive layer. Separation along the relief gap pattern reduces color variation amongst the discrete portions and processes.