摘要:
A field effect transistor includes a layer structure made of compound semiconductor (111) provided on a semiconductor substrate (110) made of GaAs or InP, as an operation layer, and employs a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When, in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region, in which the second field plate electrode overlaps the upper part of a structure composed of the first field plate electrode and a gate electrode (113), is designated as Lol, and the gate length is Lg, the relation expressed as 0≦Lol/Lg≦1 holds.
摘要:
A field effect transistor (100) exhibiting good performance at high voltage operation and high frequency includes a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region where the second field plate electrode (118) overlap the upper part of a structure including the first field plate electrode and a gate electrode (113) is designated as Lol, and the gate length is Lg, the relation expressed as 0 ≦Lol/Lg≦1 holds.
摘要:
A field effect transistor includes a layer structure made of compound semiconductor (111) provided on a semiconductor substrate (110) made of GaAs or InP, as an operation layer, and employs a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When, in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region, in which the second field plate electrode overlaps the upper part of a structure composed of the first field plate electrode and a gate electrode (113), is designated as Lol, and the gate length is Lg, the relation expressed as 0≦Lol/Lg≦1 holds.
摘要:
A field effect transistor (100) exhibiting good performance at high voltage operation and high frequency includes a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region where the second field plate electrode (118) overlap the upper part of a structure including the first field plate electrode and a gate electrode (113) is designated as Lol, and the gate length is Lg, the relation expressed as 0≦Lol/Lg≦1 holds.
摘要翻译:在高电压运行和高频下表现出良好性能的场效应晶体管(100)包括第一场极板电极(116)和第二场板电极(118)。 第二场板电极包括位于第一场极板电极和漏电极(114)之间的区域中的屏蔽部分(119),用于屏蔽第一场极板电极与漏极电极。 当在栅极长度方向的横截面视图中,第二场板电极(118)与包括第一场极板电极和栅电极的结构的上部重叠的重叠区域的栅极长度方向上的长度( 113)被指定为Lol,栅极长度为Lg,表示为0 <= Lol / Lg <= 1的关系成立。
摘要:
An object of the present invention is to improve, in a group III nitride semiconductor device, the productivity, heat radiation characteristic and performance in the element high speed operation; upon a sapphire substrate in which an A plane (an (11-20) plane) is set to be the basal plane, an epitaxial growth layer of a group III nitride semiconductor is formed and, thereon, a gate electrode 16, a source electrode 15 and a drain electrode 17 are formed; these electrodes are disposed in such a way that a direction along which they are laid makes an angle within 20° with respect to a C axis of sapphire.
摘要:
A group III nitride semiconductor device of field effect transistor type having improved productivity, reduced parasitic capacitances adapted for excellent device performance in high-speed operation as well as good heat diffusion characteristics. The device includes an epitaxial growth layer of a group III nitride semiconductor with a buffer layer laid under it, formed on an A plane (an (11-20) plane) of a sapphire. Thereon a gate electrode, a source electrode, a drain electrode, and pad electrodes are formed, and a ground conductor layer is formed on the back face of the sapphire substrate. A thickness of said sapphire substrate tsub satisfies the following Equation (1). t sub ≦ 10 ϵ sub S pad ϵ epi S gate t act where Spad is an area of the pad electrode; Sgate is an area of the gate electrode; &egr;sub is a relative permittivity of the sapphire substrate in the direction of the thickness; &egr;epi is a relative permittivity of the group III nitride semiconductor layer in the direction of the thickness; tsub is a thickness of the sapphire substrate; and tact is an effective thickness of the group III nitride semiconductor layer.
摘要:
A GaN semiconductor device with improved heat resistance of the Schottky junction electrode and excellent power performance and reliability is provided. In this semiconductor device having a Schottky gate electrode 17 which is in contact with an AlGaN electron supplying layer 14, a gate electrode 17 comprises a laminated structure wherein a first metal layer 171 formed of any of Ni, Pt and Pd, a second metal layer 172 formed of any of Mo, Pt, W, Ti, Ta, MoSi, PtSi, WSi, TiSi, TaSi, MoN, WN, TiN and TaN, and a third metal layer formed of any of Au, Cu, Al and Pt. Since the second metal layer comprises a metal material having a high melting point, it works as a barrier to the interdiffusion between the first metal layer and the third metal layer, and the deterioration of the gate characteristics caused by high temperature operation is suppressed. Since the first metal layer contacting the AlGaN electron supplying layer 14 has a high work function, the Schottky barrier is high, and superior Schottky contact is obtained.
摘要:
A semiconductor device includes, on a substrate (101), a buffer layer (102), and an channel layer (104), consisting essentially of semiconductor of a wultzite compound of group III-V, having a (0001) plane as a principal plane. The channel layer is subjected to compressive strain. A carrier supplying layer (103) is interposed between the channel layer (104) and the buffer layer (102). The carrier supplying layer (103) consists essentially of semiconductor of a wultzite compound of group III-V as a main component. N-type impurities are doped into the entire or part of the carrier supplying layer (103).
摘要:
A GaN semiconductor device with improved heat resistance of the Schottky junction electrode and excellent power performance and reliability is provided. In this semiconductor device having a Schottky gate electrode 17 which is in contact with an AlGaN electron supplying layer 14, a gate electrode 17 comprises a laminated structure wherein a first metal layer 171 formed of any of Ni, Pt and Pd, a second metal layer 172 formed of any of Mo, Pt, W, Ti, Ta, MoSi, PtSi, WSi, TiSi, TaSi, MoN, WN, TiN and TaN, and a third metal layer formed of any of Au, Cu, Al and Pt. Since the second metal layer comprises a metal material having a high melting point, it works as a barrier to the interdiffusion between the first metal layer and the third metal layer, and the deterioration of the gate characteristics caused by high temperature operation is suppressed. Since the first metal layer contacting the AlGaN electron supplying layer 14 has a high work function, the Schottky barrier is high, and superior Schottky contact is obtained.
摘要:
A hetero-junction FET has an intermediate layer including n-type-impurity doped layer between an electron supply layer and an n-type cap layer. The intermediate layer cancels the polarized negative charge generated between the electron supply layer and the n-type cap layer by ionized positive charge, thereby reducing the barrier against the electrons and source/drain resistance.