摘要:
A method of manufacturing a semiconductor device includes forming a first insulating film over an underlying film by plasma polymerization of cyclic siloxane, and forming a second insulating film on the first insulating film by plasma polymerization of the cyclic siloxane continuously, after forming the first insulating film. The deposition rate of the first insulating film is slower than the deposition rate of the second insulating film.
摘要:
The present invention provides a multilayer wiring technology by which high adhesiveness and high insulation reliability between wirings are obtained, while maintaining effective low capacitance between wirings. A semiconductor device is characterized in that a first insulating film is an insulating film formed of at least one layer which contains a siloxane structure containing silicon, oxygen and carbon; the siloxane structure in the inner part of the first insulating film contains a larger number of carbon atoms than the number of silicon atoms; and a modified layer which containing a smaller number of carbon atoms and a larger number of oxygen atoms per unit volume than the inner part of the first insulating film is formed on at least one of an interface between the first insulating film and the metal and an interface between the first insulating film and a second insulating film.
摘要:
To suppress deterioration in reliability of wiring and to reduce effective dielectric constant of wiring. In a semiconductor device, copper-containing wirings are covered by barrier insulating films, and the barrier insulating films contain a component of an organic silica containing unsaturated hydrocarbon and amorphous carbon. The copper-containing wirings are covered by the barrier insulating films that contain a component that is in an organic silica structure containing unsaturated hydrocarbon and amorphous carbon. Accordingly, inter-wiring capacitance is reduced without deteriorating reliability of the copper-containing wiring, thereby realizing a high-speed LSI with low power consumption.
摘要:
In a method for producing a semiconductor device, two or more kinds of organic siloxane compound materials each having a cyclic SiO structure as a main skeleton and having different structures are mixed and thereafter vaporized. Alternatively, those two or more kinds of organic siloxane compound materials are mixed and vaporized simultaneously to produce a vaporized gas. Then, the vaporized gas is transported to a reaction furnace together with a carrier gas. Then, in the reaction furnace, a porous insulating layer is formed by the plasma CVD method or the plasma polymerization method using the vaporized gas.
摘要:
The present invention provides a multilayer wiring technology by which high adhesiveness and high insulation reliability between wirings are obtained, while maintaining effective low capacitance between wirings. A semiconductor device is characterized in that a first insulating film is an insulating film formed of at least one layer which contains a siloxane structure containing silicon, oxygen and carbon; the siloxane structure in the inner part of the first insulating film contains a larger number of carbon atoms than the number of silicon atoms; and a modified layer which containing a smaller number of carbon atoms and a larger number of oxygen atoms per unit volume than the inner part of the first insulating film is formed on at least one of an interface between the first insulating film and the metal and an interface between the first insulating film and a second insulating film.
摘要:
A method of forming a porous insulation film uses an organic silica material gas having a 3-membered SiO cyclic structure and a 4-membered SiO cyclic structure, or an organic silica material gas having a 3-membered SiO cyclic structure and a straight-chain organic silica structure, and uses a plasma reaction in the filming process. A porous interlevel dielectric film having a higher strength and a higher adhesive property can be obtained.
摘要:
Characteristics of a low-k insulating film grown on a substrate is modulated in the thickness-wise direction, by varying the ratio of high-frequency input and low-frequency input used for inducing plasma in the course of forming the film, to thereby improve the adhesion strength while keeping the dielectric constant at a low level, wherein the high-frequency input and the low-frequency input for inducing plasma are applied from a single electrode, while elevating the level of low-frequency input at least either at the start of formation or at the end of formation of the insulating film, as compared with the input level in residual time zone.
摘要:
The present invention provides a multilayer wiring technology by which high adhesiveness and high insulation reliability between wirings are obtained, while maintaining effective low capacitance between wirings. A semiconductor device is characterized in that a first insulating film is an insulating film formed of at least one layer which contains a siloxane structure containing silicon, oxygen and carbon; the siloxane structure in the inner part of the first insulating film contains a larger number of carbon atoms than the number of silicon atoms; and a modified layer which containing a smaller number of carbon atoms and a larger number of oxygen atoms per unit volume than the inner part of the first insulating film is formed on at least one of an interface between the first insulating film and the metal and an interface between the first insulating film and a second insulating film.
摘要:
A method of forming a porous insulation film uses an organic silica material gas having a 3-membered SiO cyclic structure and a 4-membered SiO cyclic structure, or an organic silica material gas having a 3-membered SiO cyclic structure and a straight-chain organic silica structure, and uses a plasma reaction in the filming process. A porous interlevel dielectric film having a higher strength and a higher adhesive property can be obtained.
摘要:
A method for forming an interlayer dielectric film by a plasma CVD method, including turning off a radio frequency power and purging with an inert gas simultaneously.