摘要:
The invention is directed to a method for slicing an ingot in the form of a wafer by winding a wire around a plurality of grooved rollers and pressing the wire against the ingot while making the wire travel and supplying slicing slurry to the grooved rollers, in which when the ingot is sliced, an amount of displacement of the ingot changing in an axial direction is measured and an amount of axial displacement of the grooved rollers is controlled so as to correspond to the measured amount of axial displacement of the ingot, and thereby, the ingot is sliced while controlling a relative position of the wire relative to an entire length of the ingot changing in the axial direction. As a result, a slicing method and a wire saw apparatus are provided that can perform slicing in such a way that a Bow or a Warp in a wafer obtained by slicing can be reduced, for example, by controlling a slicing path built into an ingot so that, in particular, the slicing path becomes flattened.
摘要:
The invention is directed to a method for slicing an ingot in the form of a wafer by winding a wire around a plurality of grooved rollers and pressing the wire against the ingot while making the wire travel and supplying slicing slurry to the grooved rollers, in which when the ingot is sliced, an amount of displacement of the ingot changing in an axial direction is measured and an amount of axial displacement of the grooved rollers is controlled so as to correspond to the measured amount of axial displacement of the ingot, and thereby, the ingot is sliced while controlling a relative position of the wire relative to an entire length of the ingot changing in the axial direction. As a result, a slicing method and a wire saw apparatus are provided that can perform slicing in such a way that a Bow or a Warp in a wafer obtained by slicing can be reduced, for example, by controlling a slicing path built into an ingot so that, in particular, the slicing path becomes flattened.
摘要:
Provided is a polishing apparatus comprising a lower stool (12), a motor (18a) and a speed reducer (19a) for driving the lower stool, and a box (17) for covering at least the portion of the lower stool below the working action face. The polishing apparatus polishes a wafer by forcing the wafer to contact the lower stool and by rotating the lower stool. The box has its inside separated by partitions (31a and 31b) into a plurality of regions, and the motor for driving the lower stool is arranged in a region other than the region containing the lower stool. The polishing apparatus can manufacture a wafer of a stable shape, irrespective of the time elapsed from the running start and the presence/absence of the stop of the polishing apparatus.
摘要:
Provided is a polishing apparatus comprising a lower stool (12), a motor (18a) and a speed reducer (19a) for driving the lower stool, and a box (17) for covering at least the portion of the lower stool below the working action face. The polishing apparatus polishes a wafer by forcing the wafer to contact the lower stool and by rotating the lower stool. The box has its inside separated by partitions (31a and 31b) into a plurality of regions, and the motor for driving the lower stool is arranged in a region other than the region containing the lower stool. The polishing apparatus can manufacture a wafer of a stable shape, irrespective of the time elapsed from the running start and the presence/absence of the stop of the polishing apparatus.
摘要:
The present invention is a wire saw in which a wire is wound around a plurality of grooved rollers, the workpiece is sliced into wafers by causing the wire to travel and pressing the workpiece against the wire while a slurry is supplied to the grooved rollers, the wire saw controlling in such a manner that the workpiece is sliced while a supply temperature of the slurry is increased from the start to the end of slicing the workpiece. As a result, there is provided a wire saw in which Warp of the workpiece to be sliced can be improved by suppressing a decrease in a temperature of the workpiece in the vicinity of the slicing end portion of the workpiece and by making an increase in displacement of the grooved roller during slicing straight, that is, by making the slicing trajectory depicted in the workpiece close to a straight line.
摘要:
A wire saw apparatus having: a wire wound around grooved rollers and axially travels in a reciprocating direction; a nozzle for supplying a slurry; and a work-feeding mechanism feeding a work toward the wire, and slicing into wafers by pressing and feeding the work against the wire traveling in a reciprocating direction while a slurry is supplied to the wire through the nozzle. A work-holding portion holds the work through a pad plate adhered to the work and a work plate, plate-shaped or block-shaped slurry-splash-blocking members are arranged in the direction of a right angle to a row of the wire wound around the grooved rollers below the work-holding portion and on both the wire cut-in side and a wire cut-out side.
摘要:
A film deposition method, which can form a high quality functional thin film excellent in various physical properties on a surface such as a plastic substrate, is provided. A carbon precursor film is formed on the surface of the substrate K with carbon ions (N2A) using a processing source (4) (a FCVA ion source) with no voltage applied to the substrate K, and then carbon ions (N2B) are implanted in the carbon precursor film with a pulsed voltage containing a negative pulse voltage of −15 kV or less applied to the substrate K, in order to form the carbon thin film. The quality of the carbon precursor film is improved and the various physical properties of the carbon thin film can be controlled.
摘要:
A portable fuel cell stack is provided in which the number of components is reduced by reducing the number of flow field plates, cell performance is improved by reducing the number of contact portions to thereby lower internal resistance, and fuel is supplied from the center of an end plate directly to a fuel distribution manifold. The portable fuel cell stack includes two end plates, a plurality of unit cells positioned between the two end plates, a fuel distribution manifold positioned in the center of the unit cell for fuel supply thereto, a tie bolt passed through the centers of the fuel manifold and the unit cell for integration of these members, and fixing nuts threaded to both ends of the tie bolt for integrally clamping the plurality of unit cells together between the end plates via an O-ring, etc. The unit cell includes a polymer electrolyte membrane, an oxygen electrode and a fuel electrode installed on both sides of the polymer electrolyte membrane, a flow field plate adjacent to the oxygen electrode side, and a separator plate on the outside of the flow field plate adjacent in contact therewith and another separator plate on the outside of the fuel electrode side in contact therewith. One of the fixing nuts has a fuel supply port connecting to the fuel distribution manifold.
摘要:
An apparatus for growing a single crystal (20) comprising at least a main chamber (1) enclosing a crucible (5, 6) for accommodating a raw material melt (4) and a heater (7) for heating the raw material melt and a pulling chamber (2) continuously provided above the main chamber, into which a grown single crystal is pulled and stored, wherein the apparatus further comprises a cooling cylinder (11) that extends at least from a ceiling of the main chamber toward a raw material melt surface so as to surround a single crystal under pulling (3) and is forcibly cooled with a cooling medium, and an auxiliary cooling member (13) extending below the cooling cylinder and having a cylindrical shape or a shape tapered toward the downward direction. There is provided an apparatus for growing a single crystal that can exert cooling effect on a grown single crystal to the maximum extent so as to accelerate the crystal growth rate and safely produce a single crystal without leakage of cooling medium due to breakage etc.
摘要:
The present invention provides a method of resuming operation of a wire saw in which slicing of a workpiece is suspended and then resumed, including slicing the workpiece while detecting a traveling direction and a traveling speed of the reciprocating wire and recording them chronologically; and resuming the slicing while controlling the traveling direction and a traveling time in the traveling direction of the wire on a basis of a wire traveling history recorded until the suspending of the slicing of the workpiece such that the reciprocating cycle of the wire becomes continuous between before the suspending and after the resuming of the slicing of the workpiece. This method enables the slicing to be completed while the nanotopography of the sliced wafer is surely prevented from degrading, even when the slicing of the workpiece with a wire saw is suspended due to, for example, breaking of the wire.