摘要:
A liquid crystal display panel includes a counter substrate having a counter electrode and a multi-layered dielectric film both formed thereon, and an array substrate formed with pixel electrodes and thin-film transistors serving as switching elements. A layer of polymer dispersed liquid crystal material containing a UV-curable resin component and a liquid crystal component is sandwiched and sealed between the counter and array substrates. A light shielding film is formed over each thin-film transistor. The multi-layered dielectric film is a laminated structure of alternating thin-films of SiO2 and HfO2. Since the multi-layered dielectric film is of a nature capable of transmitting UV-rays of light therethrough, the UV-curable resin component positioned underneath the multi-layered dielectric film can be cured during the manufacture. Also, since the multi-layered dielectric film is of a nature capable of reflecting light of a visible region, it serves as a black matrix, reflecting the visible light modulated by the display panel. Black beads are used to keep the film thickness of the liquid crystal layer at a predetermined value. Preferably, a dielectric thin-film having a relative dielectric constant smaller than that of the liquid crystal material is formed on signal lines for transmitting signals to the thin-film transistors, to thereby accomplish an electromagnetic shield. Where color filters are to be formed on the pixel electrodes, those color filters may be formed on the signal lines to accomplish the electromagnetic shield.
摘要:
A liquid crystal panel includes a first substrate and on which pixel electrodes are formed in a matrix pattern, a second substrate on which a counter electrode is formed, an ultraviolet reducing layer formed on one of the first and second substrate corresponding to the matrix pattern of the pixel electrodes, and a polymer dispersion liquid crystal layer sandwiched between the first and second substrates. The liquid crystal layer is cured by irradiating ultraviolet light from the side on which the ultraviolet reducing layer is formed. The polymer dispersion liquid crystal layer is arranged between the counter electrode and each pixel electrode has an average liquid crystal drop diameter which is larger than that arranged in other areas.
摘要:
A liquid crystal panel includes a first substrate on which pixel electrodes are formed in a matrix pattern, a second substrate on which a counter electrode is formed, an ultraviolet reducing layer formed on one of the first and second substrates and corresponding to the matrix pattern of the pixel electrodes, and a polymer dispersion liquid crystal layer sandwiched between the first and second substrates. The polymer dispersion liquid crystal layer is cured by irradiating ultraviolet light from the side on which the ultraviolet reducing layer is formed such that the polymer dispersion liquid crystal layer arranged between the counter electrode and each pixel electrode has an average liquid crystal drop diameter which is larger than that arranged in other areas.
摘要:
A liquid crystal display panel includes a counter substrate having a counter electrode and a multi-layered dielectric film both formed thereon, and an array substrate formed with pixel electrodes and thin-film transistors serving as switching elements. A layer of polymer dispersed liquid crystal material containing a UV-curable resin component and a liquid crystal component is sealingly sandwiched between the counter and array substrates. A light shielding film is formed over each thin-film transistor. The multi-layered dielectric film is a laminated structure of alternating thin-films of SiO.sub.2 and HfO.sub.2. Since the multi-layered dielectric film is of a nature capable of transmitting UV-rays of light therethrough, the UV-curable resin component positioned underneath the multi-layered dielectric film can be cured during the manufacture. Also, since the multi-layered dielectric film is of a nature capable of reflecting light of a visible region, it serves as a black matrix, reflecting the visible light modulated by the display panel. Black beads are used to keep the film thickness of the liquid crystal layer at a predetermined value. Preferably, a dielectric thin-film having a relative dielectric constant smaller than that of the liquid crystal material is formed on signal lines for transmitting signals to the thin-film transistors, to thereby accomplish an electromagnetic shield. Where color filters are to be formed on the pixel electrodes, those color filters may be formed on the signal lines to accomplish the electromagnetic shield.
摘要:
A liquid crystal display panel includes a counter substrate having a counter electrode and a multi-layered dielectric film both formed thereon, and an array substrate formed with pixel electrodes and thin-film transistors serving as switching elements. A layer of polymer dispersed liquid crystal material containing a UV-curable resin component and a liquid crystal component is sandwiched and sealed between the counter and array substrates. A light shielding film is formed over each thin-film transistor. The multi-layered dielectric film is a laminated structure of alternating thin-films of SiO.sub.2 and HfO.sub.2. Since the multi-layered dielectric film is of a nature capable of transmitting UV-rays of light therethrough, the UV-curable resin component positioned underneath the multi-layered dielectric film can be cured during the manufacture. Also, since the multi-layered dielectric film is of a nature capable of reflecting light of a visible region, it serves as a black matrix, reflecting the visible light modulated by the display panel. Black beads are used to keep the film thickness of the liquid crystal layer at a predetermined value. Preferably, a dielectric thin-film having a relative dielectric constant smaller than that of the liquid crystal material is formed on signal lines for transmitting signals to the thin-film transistors, to thereby accomplish an electromagnetic shield. Where color filters are to be formed on the pixel electrodes, those color filters may be formed on the signal lines to accomplish the electromagnetic shield.
摘要:
A liquid crystal panel includes a first substrate on which pixel electrodes are formed in a matrix pattern, a second substrate on which a counter electrode is formed, an ultraviolet reducing layer formed on one of the first and second substrates and corresponding to the matrix pattern of the pixel electrodes and a polymer dispersion liquid crystal layer sandwiched between the first and second. The liquid crystal layer is cured by irradiating ultraviolet light from the side on which the ultraviolet reducing layer is formed. The polymer dispersion liquid crystal layer is arranged between the counter electrode and each pixel electrode and has an average liquid crystal drop diameter which is larger than that arranged in other areas.
摘要:
A spray nozzle for providing a high efficient atomization and a uniform fluid flow pattern, includes an internal fluid channel, sealing and a spray nozzle, on which two of spray orifices are designed close to each other. The fluid flow is guided in the internal fluid channel smoothly and separated to two fluid flows inside of spray nozzle. These two fluid flows are pressed out from the spray orifices and interfered with each other right after flow out from the spray orifices. The fluid is being atomized efficiently because the spray nozzle is designed to fully utilize both flow velocity energy and flow pressure potential energy, which is well known as “Potential Core” or “Potential Zone” and will disappear in a very short distance right after fluids flow out from the spray orifices. During the fluid flows collide with each other by using the flow velocity right after flow out from the orifices, the fluid flows explode within the potential core by using the flow pressure potential energy. And then, the fluid flow and the fluid particles are continuously atomized by using the velocity difference between the fluid flow and the air around the fluid flow to have very fine particles.
摘要:
An EL display apparatus according to the present invention includes EL device (15) adapted to emit light at a luminance corresponding to a current fed thereto. A source driver (14) outputs a current higher than a current corresponding to an image signal to the EL device (16) through a source signal line (18). This operation charges/discharges a parasitic capacitance present in the source signal line (18). A transistor (11d) formed between the EL device (15) and the source driver (14) operates so that the EL device (15) is fed with the current for only a part of a one-frame period. As a result, the El device (15) emits light for only the part of the period.
摘要:
In order to charge and discharge parasitic capacitance of a source signal line sufficiently and program a predetermined current value into a pixel transistor, it is necessary to output a relatively large current from the source driver circuit. However, if such a large current is passed through the source signal line, the value of this current is programmed into the pixel, causing a larger than desired current to flow through an EL element. For example, if a 10 times larger current is used for programming, a 10 times larger current flows through the EL element, and thus the EL element illuminates 10 times more brightly. To obtain predetermined emission brightness, the time during which the current flows through the EL element can be reduced to 1/10 of one frame (1 F). This way, the parasitic capacitance of the source signal line can be charged and discharged sufficiently and the predetermined emission brightness can be obtained.
摘要:
A driving method of an electroluminescent (EL) display device for driving the EL display device having EL elements placed in a matrix state thereon, has when a pixel line selected to write a video signal matches with a pixel line selected to supply a current to the EL elements, deselecting at least one of the pixel line selected to write the video signal and the pixel line selected to supply a current to the EL elements.