Abstract:
In this exposure system, alignment marks on a photosensitive material are photographed with a reading unit. Prior to this photographing, a standard board, having detection marks at positions readable to the reading unit at preset intervals along the movement direction of the reading unit, is provided. At least one of the detection marks is photographed with the reading unit, which is arranged in a position to photograph the alignment marks provided on the photosensitive material. Calibration data is calculated based on data on the camera optical axis deviation obtained by this photographing. Standard position data reflects the calibration data, whereby calibration of the exposure position adjustment function of the exposure device is performed.
Abstract:
Provided is a low-cost, highly active, environmentally friendly living radical polymerization catalyst which does not require a radical initiator. An organic compound having an oxidation-reduction capability is used as a catalyst. Even if a radical initiator is not used, a monomer can be subjected to a radical polymerization to obtain a polymer having narrow molecular weight distribution. The cost of the living radical polymerization can be remarkably reduced. It is made possible to prevent adverse effects of using a radical initiator. The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages of the catalyst such as low toxicity of the catalyst, low amount of the catalyst necessary, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor (which do not require a post-treatment for a molded article), etc.
Abstract:
A method for manufacturing a polishing pad, which may be laminated, with a small number of manufacturing steps, high productivity and no peeling between a polishing layer and a cushion layer includes preparing a cell-dispersed urethane composition by a mechanical foaming method; continuously discharging the cell-dispersed urethane composition onto a face material, while feeding the face material; laminating another face material on the cell-dispersed urethane composition; curing the cell-dispersed urethane composition, while controlling its thickness to be uniform, so that a polishing layer including a polyurethane foam is formed; cutting the polishing layer parallel to the face into two pieces so that two long polishing layers each including the polishing layer and the face material are simultaneously formed; and cutting the long polishing layers to produce the polishing pad.
Abstract:
A method for producing tolylene diisocyanate includes: mixing a first diaminotoluene containing 2,4-diaminotoluene and 2,6-diaminotoluene at a first isomer ratio and a second diaminotoluene containing 2,4-diaminotoluene and/or 2,6-diaminotoluene at a second isomer ratio that is different from the first isomer ratio so as to prepare mixed diaminotoluene; producing tolylene dicarbamate by reaction of the mixed diaminotoluene, urea and/or N-unsubstituted carbamic acid ester and alcohol; and thermally decomposing the tolylene dicarbamate.
Abstract:
A process for producing zinc toluenesulfonate comprising reacting a zinc compound comprising Zn(OH)2 with toluenesulfonic acid and/or a salt thereof in the presence of an alcohol having 1 to 20 carbon atoms in total at a temperature higher than 60° C.
Abstract:
Provided is a catalyst used for a living radical polymerization method, which contains a central element consisting of carbon and at least one halogen atom binding to the central element. Further, a hydrocarbon compound can be used as a catalyst precursor. A monomer having a radical-reactive unsaturated bond is subjected to a radical polymerization reaction in the presence of the catalyst, consequently a polymer having narrow molecular weight distribution can be obtained, and thus the cost of the living radical polymerization can be remarkably reduced. The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages such as low toxicity of the catalyst, low amount of the catalyst used, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor (no need of any post-treatments for a molded article), and the like.
Abstract:
A method for manufacturing a polishing pad, which may be laminated, with a small number of manufacturing steps, high productivity and no peeling between a polishing layer and a cushion layer includes preparing a cell-dispersed urethane composition by a mechanical foaming method; continuously discharging the cell-dispersed urethane composition onto a face material, while feeding the face material; laminating another face material on the cell-dispersed urethane composition; curing the cell-dispersed urethane composition, while controlling its thickness to be uniform, so that a polishing layer including a polyurethane foam is formed; cutting the polishing layer parallel to the face into two pieces so that two long polishing layers each including the polishing layer and the face material are simultaneously formed; and cutting the long polishing layers to produce the polishing pad.
Abstract:
A method for manufacturing a polishing pad that has a high level of optical detection accuracy and is prevented from causing slurry leak from between the polishing region and the light-transmitting region includes preparing a cell-dispersed urethane composition by a mechanical foaming method; placing a light-transmitting region at a predetermined position on a face material or a belt conveyor, continuously discharging the cell-dispersed urethane composition onto a part of the face material or the belt conveyor where the light-transmitting region is not placed; placing another face material or belt conveyor on the discharged cell-dispersed urethane composition; curing the cell-dispersed urethane composition to form a polishing region including a polyurethane foam, so that a polishing sheet is prepared; applying a coating composition containing an aliphatic and/or alicyclic polyisocyanate to one side of the polishing sheet and curing the coating composition to form a water-impermeable film; and cutting the polishing sheet.
Abstract:
A polishing pad of excellent durability and adhesion between the polishing layer and the base material layer includes a polishing layer arranged on a base material layer, wherein the polishing layer includes a thermosetting polyurethane foam having roughly spherical interconnected cells having an average cell diameter of 20 to 300 μm The polyurethane foam includes an isocyanate component and an active hydrogen-containing compound as starting material components, and the active hydrogen-containing compound includes 30 to 85% by weight of a high-molecular-weight polyol having 2 to 4 functional groups and a hydroxyl value of 20 to 100 mg KOH/g.
Abstract:
Provided is a low-cost, highly active, environmentally friendly living radical polymerization catalyst which does not require a radical initiator. An organic compound having an oxidation-reduction capability is used as a catalyst. Even if a radical initiator is not used, a monomer can be subjected to a radical polymerization to obtain a polymer having narrow molecular weight distribution. The cost of the living radical polymerization can be remarkably reduced. It is made possible to prevent adverse effects of using a radical initiator. The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages of the catalyst such as low toxicity of the catalyst, low amount of the catalyst necessary, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor (which do not require a post-treatment for a molded article), etc.