摘要:
Disclosed are a production process of a dye polymer having a dye content of from 1 to 50 wt %, and the dye polymer and its use. The production process includes subjecting an addition-polymerizable monomer to living radical polymerization by using, as a polymerization initiator, a dye having a polymerization initiating group enabling the living radical polymerization. The dye polymer and a composition of the dye polymer and a pigment are useful as good coloring agents for various products or articles. The colored products or articles are high in transparency, and are provided with high added value. The dye polymer can also be used as a dispersant for pigments, thereby making it possible to afford pigment dispersions excellent in dispersion properties and dispersion stability.
摘要:
Disclosed are a production process of a dye polymer having a dye content of from 1 to 50 wt %, and the dye polymer and its use. The production process includes subjecting an addition-polymerizable monomer to living radical polymerization by using, as a polymerization initiator, a dye having a polymerization initiating group enabling the living radical polymerization. The dye polymer and a composition of the dye polymer and a pigment are useful as good coloring agents for various products or articles. The colored products or articles are high in transparency, and are provided with high added value. The dye polymer can also be used as a dispersant for pigments, thereby making it possible to afford pigment dispersions excellent in dispersion properties and dispersion stability.
摘要:
Disclosed is a pigment dispersion containing at least a pigment, a liquid medium and a high-molecular dispersant. The high-molecular dispersant is a block polymer represented by A-B or A-B-C, in which A, B and C each represent a polymer block and the A and C blocks may be the same or different. The block polymer and its production process are also disclosed. The high-molecular dispersant is free of problems of a smell, coloration, a heavy metal and cost, and its use can provide a pigment dispersion excellent in the dispersion stability of a pigment.
摘要:
Disclosed is a pigment dispersion containing at least a pigment, a liquid medium and a high-molecular dispersant. The high-molecular dispersant is a block polymer represented by A-B or A-B-C, in which A, B and C each represent a polymer block and the A and C blocks may be the same or different. The block polymer and its production process are also disclosed. The high-molecular dispersant is free of problems of a smell, coloration, a heavy metal and cost, and its use can provide a pigment dispersion excellent in the dispersion stability of a pigment.
摘要:
Disclosed are an aqueous pigment dispersion containing at least a pigment, water, a high-molecular dispersant, and an alkali. The high-molecular dispersant is a diblock polymer having a formula (1) of A-B or a triblock polymer having a formula (2) of A-B-C. The diblock or triblock polymer is a diblock or triblock polymer obtained by polymerizing addition-polymerizable monomers with a radical generator while using an organic iodide as a polymerization initiating compound and an organic phosphorus compound, organic nitrogen compound or organic oxygen compound as a catalyst. Also disclosed are a production method and use of the aqueous pigment dispersion. With the high-molecular dispersant obtained by a simple living radical polymerization process free of the problems of conventional living radical polymerization and having a precisely-controlled molecular structure, the aqueous pigment dispersion can be obtained with the pigment dispersed in it.
摘要:
Provided is a low-cost, highly active, environmentally friendly living radical polymerization catalyst which does not require a radical initiator. An organic compound having an oxidation-reduction capability is used as a catalyst. Even if a radical initiator is not used, a monomer can be subjected to a radical polymerization to obtain a polymer having narrow molecular weight distribution. The cost of the living radical polymerization can be remarkably reduced. It is made possible to prevent adverse effects of using a radical initiator. The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages of the catalyst such as low toxicity of the catalyst, low amount of the catalyst necessary, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor (which do not require a post-treatment for a molded article), etc.
摘要:
Provided is a catalyst used for a living radical polymerization method, which contains a central element consisting of carbon and at least one halogen atom binding to the central element. Further, a hydrocarbon compound can be used as a catalyst precursor. A monomer having a radical-reactive unsaturated bond is subjected to a radical polymerization reaction in the presence of the catalyst, consequently a polymer having narrow molecular weight distribution can be obtained, and thus the cost of the living radical polymerization can be remarkably reduced. The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages such as low toxicity of the catalyst, low amount of the catalyst used, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor (no need of any post-treatments for a molded article), and the like.
摘要:
Provided is a low-cost, highly active, environmentally friendly living radical polymerization catalyst which does not require a radical initiator. An organic compound having an oxidation-reduction capability is used as a catalyst. Even if a radical initiator is not used, a monomer can be subjected to a radical polymerization to obtain a polymer having narrow molecular weight distribution. The cost of the living radical polymerization can be remarkably reduced. It is made possible to prevent adverse effects of using a radical initiator. The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages of the catalyst such as low toxicity of the catalyst, low amount of the catalyst necessary, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor (which do not require a post-treatment for a molded article), etc.
摘要:
A highly active and environment-friendly catalyst for use in a living radical polymerization is provided. A catalyst for use in a living radical polymerization method is provided. The catalyst comprises a central element, which is selected from nitrogen and phosphorus, and at least one halogen atom, which is bound to the central element. A monomer having a radical reactive unsaturated bond is subjected to a radical polymerization reaction in the presence of the catalyst, thereby it is possible to obtain a polymer having narrow molecular weight distribution. The present invention has the merits such as low toxicity of the catalyst, a small amount of the catalyst being required, high solubility of the catalyst in the polymerization media, mild reaction conditions, no coloration, no odor (unnecessary post-treatment of molded products). The method of the present invention is more environment-friendly and economical than other living radical polymerization methods.
摘要:
A highly active and environment-friendly catalyst for use in a living radical polymerization is provided. A catalyst for use in a living radical polymerization method is provided. The catalyst comprises a central element, which is selected from germanium, tin and antimony, and at least one halogen atom, which is bound to the central element. A monomer having a radical reactive unsaturated bond is subjected to a radical polymerization reaction under the presence of the catalyst, thereby it is possible to obtain a polymer having narrow molecular weight distribution. The present invention has the merits such as low toxicity of the catalyst, a small amount of the catalyst can be used, high solubility of the catalyst, mild reaction conditions, no coloration, no odor (unnecessary post-treatment of molded products). The method of the present invention is more environment-friendly and economical than a conventional living radical polymerization method.