摘要:
A semiconductor storage having the same memory cells as a DRAM, operating in SRAM specifications, and having advantages such as a small chop size, a low power consumption, a low manufacturing cost, no access delay due to skew, and no memory cell breakdown. An ATD circuit (3) generates a one-shot pulse added to an address change detection signal (ATD) from a change of the address (Address) supplied from external. By combining one-shot pulse produced for each bit of the address, only one one-shot pulse is generated even if the address includes skew. A memory cell is refreshed by using a refresh address (R_ADD) generated by a refresh control circuit (4) during the time when a one-shot pulse is generated. At the fall of the one-shot pulse, a latch control signal (LC) is generated, and the address is taken in a latch (2) so as to access a memory cell array (6).
摘要:
There is provided a method of entry of an operation mode of a semiconductor memory during operations without need of any specific timing specification and with effective suppression to any erroneous entry.If read cycles for plural addresses are continued, then a request for entry of operation mode is accepted (steps S1 and S2). In write cycles following to those read cycles, an operation mode to be entered is decided based on data externally designated, wherein in the first write cycle, the kind of the operation mode is set, and then in the next write cycle, conditions for the operation mode are set for the entry of the operation mode of the semiconductor memory.
摘要:
There is provided a method of entry of an operation mode of a semiconductor memory during operations without need of any specific timing specification and with effective suppression to any erroneous entry. If read cycles for plural addresses are continued, then, a request for entry of operation mode is accepted. In write cycles following to those read cycles, an operation mode to be entered is decided based on data externally designated, wherein in the first write cycle, the kind of the operation mode is set, and then in the next write cycle, conditions for the operation mode are set for the entry of the operation mode of the semiconductor memory.
摘要:
There is provided a method of entry of an operation mode of a semiconductor memory during operations without need of any specific timing specification and with effective suppression to any erroneous entry. If read cycles for plural addresses are continued, then a request for entry of operation mode is accepted (steps S1 and S2). In write cycles following to those read cycles, an operation mode to be entered is decided based on data externally designated, wherein in the first write cycle, the kind of the operation mode is set, and then in the next write cycle, conditions for the operation mode are set for the entry of the operation mode of the semiconductor memory.
摘要:
Problems are prevented that a refresh provides an influence to a normal access and that a continuation of write operations inhibits refresh. In a semiconductor memory device, a clock signal providing a reference to a time interval of refresh operations based on addresses corresponding to a single row s generated as a refresh clock signal. A transition of an access address “Address” externally supplied and corresponding to a memory cell is detected, so that a refresh operation is executed to a memory cell corresponding to a refresh address by triggering the generation of this detection signal before an access to a memory cell designated by the access address is made, wherein the upon input of a write enable signal /WE, the refresh is executed by triggering this signal before a write operation is executed and the refresh operation by triggering the generation of the access address is discontinued in a predetermined period of time based on the refresh clock signal.
摘要:
A semiconductor memory device is provided for preventing a late-write from disturbing a refresh operation and also for reducing a current consumption in a write cycle with execution of the late-write. Upon a transition of an address ADD, an address transition detector circuit detects this address transition. Upon receipt of a result of detection by the address transition detector circuit, a state control circuit judges an operation to be executed, from an output enable signal /OE and a write enable signal /WE, and then outputs any of a read statement RS, a write statement WS, and a refresh statement FS. According to a clock signal ACLK, input signals such as addresses are taken for executions of operations based on the statements.
摘要:
Refresh of memory cells is performed periodically by a refresh timer, and collision between memory access and memory refresh is avoided. When memory access occurs, an F/F 163 is set by a one shot pulse from an OS circuit 161, a memory access request is inputted to a memory accessing pulse generator circuit 171 through a NOR gate 167, and a latch control signal LC and an enable signal REN are outputted. When a refresh request from the refresh timer is inputted to an AND gate 168 during the memory access, the output of the NOR gate 167 is at the “L” level, and the refresh request is blocked by the AND gate 168. Thereafter, at the time when the latch control signal LC is turned into the “L” level, F/Fs 163, 164 and 165 are reset, the output of the NOR gate 167 is turned into the “H” level, the refresh request is inputted to a refreshing pulse generator circuit 170, and a refresh enable signal RERF is outputted.
摘要翻译:通过刷新定时器周期性地执行存储器单元的刷新,并避免存储器访问和存储器刷新之间的冲突。 当存储器访问发生时,通过来自OS电路161的单触发脉冲设置F / F 163,通过NOR门167将存储器访问请求输入到存储器访问脉冲发生器电路171,以及锁存控制信号LC和 输出使能信号REN。 当在存储器访问期间来自刷新定时器的刷新请求被输入到与门168时,或非门167的输出处于“L”电平,刷新请求由与门168阻止。此后, 当锁存控制信号LC变为“L”电平时,F / F 163,164和165被复位,或非门167的输出变成“H”电平,刷新请求被输入到 输出刷新脉冲发生器电路170和刷新使能信号RERF。
摘要:
A one-shot signal generation circuit is provided which makes it easy to adjust pulse width and to deal with variation of skew of an ATD signal, and can reduce chip area. A timing determination section (100) is reset by an edge of a first detected signal among a plurality of address transition detection signals (ATD signals) which have arrived within the skew period of an address signal, measures a first predetermined time by taking an edge of a second detected signal as start instant, and outputs a signal DST which reflects the result of this measurement. A timing determination section (110) measures a second predetermined time by taking an edge of the first detected signal as start instant, and outputs a signal PG which reflects the result of this measurement. An LC generation circuit (14) outputs a one-shot signal (LC) whose start instant is determined by the signal PG and whose end instant is determined by the signal DST.
摘要:
The present invention provides a non-synchronous semiconductor memory device configured as a pseudo-SRAM and capable of relaxing the limitation to address skew and improving the read rate. A data latch circuit 110 holds data having been read out of memory cells in a memory cell array 106 designated by a tow address included in an address ADD in a read mode. Upon transitions of column addresses A0, A1 included in the address, a multiplexer 111 sequentially and non-synchronously feeds out the data held in the data latch circuit 110 based on the column addresses A0, A1.
摘要:
A test method and a test circuit which enable operations to be checked when the time interval between a refresh operation and a read or write operation is forcibly reduced. Timings for a read or write operation in a normal operation mode and in a test mode are determined on the basis of an address transition detection circuit. A timing for a refresh operation in the normal operation mode is set on the basis of a normal refreshing pulse signal generated by a refresh pulse generating circuit in response to a timing signal generated by a timer circuit. A timing for a refresh operation in the test mode is set on the basis of a first testing refresh pulse generation signal generated by a first testing refresh pulse generating circuit in response to the address transition detection signal. By controlling a timing for generating the first testing refresh pulse generation signal, it is possible to generate a read or write operation and a refresh operation so that there is a predetermined time interval between these operations.