摘要:
A walking robot and a control method in which conversion between walking servo control methods is stably carried out. The walking robot includes a sensor unit to measure angles and torques of joints, and a control unit to calculate voltages applied in a Finite State Machine (FSM) control mode and a Zero Moment Point (ZMP) control mode according to the angles and torques of the joints to drive respective joint motors, to store last target joint angles in the FSM control mode during conversion from the FSM control mode to the ZMP control mode, and to perform a motion based on the FSM control mode by substituting the last target joint angles in the FSM control mode for target joint angles in the FSM control mode during conversion from the ZMP control mode to the FSM control mode, thereby performing stable conversion between walking servo control modes without joint sagging.
摘要:
A robot and a control method thereof may adjust a yaw moment generated from a foot contacting a ground to achieve stable walking of the robot. The robot, which may have an upper body and a lower body, may include a main controller starting walking of the robot through only motions of joints of the lower body and adjusting a motion of the upper body such that a yaw moment generated from a foot the lower body during walking of the robot is less than the maximum static frictional force of a ground to perform stable walking of the robot, and sub controllers driving actuators of the joints according to a control signal of the main controller.
摘要:
A humanoid robot that achieves stable walking based on servo control of a joint torque and a walking control method thereof. The humanoid robot calculates a joint position trajectory compensation value and a joint torque compensation value using a measurement value of a sensor, compensates for a joint position trajectory and a joint torque using the calculated compensation value, and drives a motor mounted to each joint according to the compensated joint torque.
摘要:
A walking robot and a control method thereof. The control method includes storing angle change data according to time corresponding to at least one joint unit of the robot using human walking data, extracting reference knot points from the angle change data according to time, and generating a reference walking trajectory using the extracted reference knot points, calculating a walking change factor to perform change between walking patterns of the robot, generating a target walking trajectory through an arithmetic operation between the reference walking trajectory and the calculated walking change factor, calculating a control torque to track the generated target walking trajectory, and transmitting the calculated control torque to the at least one joint unit so as to control walking of the robot, thereby achieving various walking patterns through a comparatively simple arithmetic operation process.
摘要:
Provided are a semiconductor chip, a method of fabricating a semiconductor chip, and a semiconductor chip stack package. The semiconductor chip includes a semiconductor substrate and a semiconductor device on the semiconductor substrate. A dielectric covers the semiconductor device. A top metal is on the dielectric and electrically connected to the semiconductor device. A deep via penetrates the semiconductor substrate and the dielectric. An interconnection connects the deep via and the top metal electrically. A bump is in contact with the top metal and the interconnection.
摘要:
A wiring structure, a semiconductor device having the structure, and a method for manufacturing the semiconductor device are disclosed. The wiring structure includes a first metal layer, a second metal layer on the first metal layer, an insulating layer between the first metal layer and the second metal layer, and a metal via pattern formed in the insulating layer to electrically connect the first and second metal layers to each other. The metal via pattern includes a plurality of metal vias spaced apart from one another, and each of the metal vias includes a vertical via line extending in a vertical direction and a horizontal via line extending in a horizontal direction to cross the vertical via line. The wiring structure may achieve minimized chip defects, fewer cracks in the insulating layer, effective use of the occupation area of a semiconductor chip, and reduced chip size and manufacturing costs.
摘要:
A semiconductor device, and method for manufacturing a device with selective copper plating in a deep via. The method comprises etching a plurality of deep trenches in the surface of wafer, sequentially forming an insulating layer, a copper anti-diffusion layer, a metal layer, and a copper seed layer over the surface and deep trenches of the wafer, performing a first planarization process in order to remove the copper seed layer on the surface of wafer while retaining the copper seed layer in the deep trenches of the wafer, and forming a plurality of via patterns by copper plating the copper seed layer remaining in the deep trenches of the wafer.