摘要:
An eNodeB (eNB), user equipment (UE) and method for operating in enhanced coverage (EC) modes are generally described. The UE may receive one or more physical broadcast channel (PBCH) signals, dependent on whether the UE is in a normal coverage mode or in one of the EC modes. The PBCH signal may be combined to form a combined PBCH signal, when the UE is in an EC mode, and decoded to determine one of a plurality of sets of resource regions associated different EC modes for communication with the eNB. The signal may be scrambled using a Radio Network Temporary Identifier (RNTI) dependent on at least one of a signal type of the control signal and the EC mode. Paging and the system information block (SIB) signals in a Physical Downlink Shared Channel (PDSCH) may be decoded without decoding a physical downlink control channel (PDCCH) signal associated with the PDSCH.
摘要:
Disclosed embodiments include an end-to-end UE and eNB HARQ protocol design for various TDD−FDD joint operation wireless network configurations. Designs for timing of HARQ feedback in response to PDSCH and PUSCH transmissions (or simply, PDSCH and PUSCH) include both HARQ feedback from a UE, and HARQ feedback from an eNB. The PUSCH HARQ timeline embodiments also include both self-scheduling and cross-carrier scheduling scenarios for PUSCH transmissions. In addition, designs for the cross-carrier scheduling scenarios contemplate an FDD scheduling cell or a TDD scheduling cell.
摘要:
An eNodeB (eNB), user equipment (UE) and method for operating using a reduced data transmission bandwidth are generally described. The UE may receive downlink control information (DCI) that provides a resource allocation (RA) of a reduced physical resource block (PRBmin) of less than 1 PRB for communications in a PRB of a subframe. Whether the RA is localized or distributed may be predefined, configured via system information block or Radio Resource Control signaling, or indicated in the DCI format. The DCI format may specify the resources within the PRB allocated to the UE through a subcarrier block index and total number of subcarrier blocks or a bitmap corresponding to a unique block of subcarriers or block index. An order in a list of cell Radio Network Temporary Identifiers (RNTIs) may be used with a common RNTI to derive the reduced RA from a 1 PRB RA.
摘要:
Embodiments of an eNB to operate in accordance with a coverage enhancement mode are disclosed herein. The eNB may comprise hardware processing circuitry to, during a legacy sub-frame, transmit a system information block (SIB) in legacy SIB frequency resources according to a legacy SIB transmission format and refrain from transmission of channel state information reference signals (CSI-RS). The hardware processing circuitry may be further to, during a first coverage enhancement sub-frame, transmit a first portion of the SIB in first SIB frequency resources included in the legacy SIB frequency resources. The hardware processing circuitry may be further to, during a first coverage enhancement sub-frame, transmit a first set of CSI-RS in first CSI-RS frequency resources that include at least a portion of the legacy SIB frequency resources.
摘要:
Embodiments of a machine-type communication (MTC) User Equipment (UE) and methods for configuring a MTC UE using an evolved Node B (eNB) are generally described herein. A method for configuring a UE for communication performed by circuitry of an evolved Node B (eNB) may include broadcasting, from the eNB, a physical downlink control channel (PDCCH) transmission on a licensed band, transmitting, from the eNB to the UE, a physical broadcast channel (PBCH) transmission multiplexed with a machine-type communication (MTC) PBCH (M-PBCH) transmission, the M-PBCH transmission including a MTC master information block (M-MIB) in a MTC region of the licensed band, wherein the MTC region includes a subset of frequencies of the licensed band, and transmitting, from the eNB to the UE, a first data transmission on the MTC region in a downlink.
摘要:
Technology to support mapping for Hybrid Automatic Retransmission re-Quest (HARQ) for Carrier Aggregation (CA) is disclosed. One method can include a user equipment (UE) identifying, within a radio frame, a type 2 DownLink (DL) sub-frame within a virtual bundling window associated with a Secondary Component Carrier (SCC). The type 2 DL sub-frame can be virtually moved from a Primary Component Carrier (PCC) for HARQ-ACKnowledge (HARQ-ACK) multiplexing of the virtual bundling window. The UE can extract a Component Carrier Element (CCE) number for a first CCE used by a Physical Downlink Control CHannel (PDCCH) transmission corresponding to the type 2 DL sub-frame. The UE can determine a Physical Uplink Control CHannel (PUCCH) resource for carrying a HARQ-ACK multiplexing message based on the CCE number when a PCC window size of the PCC is greater than an SCC window size of the SCC.
摘要:
Technology to determine a Hybrid Automatic Repeat reQuest-ACKnowledge (HARQ-ACK) codebook size for inter-band time division duplex (TDD) carrier aggregation (CA) is disclosed. In an example, a user equipment (UE) operable to determine a HARQ-ACK codebook size for inter-band TDD CA can include computer circuitry configured to: Determine a HARQ bundling window for inter-band TDD CA including a number of downlink (DL) subframes using HARQ-ACK feedback; divide the HARQ bundling window into a first part and a second part; and calculate the HARQ-ACK codebook size based on the first part and the second part. The first part can include DL subframes of configured serving cells that occur no later than the DL subframe where a downlink control information (DCI) transmission for uplink scheduling on a serving cell is conveyed, and the second part can include physical downlink shared channel (PDSCH) subframes occurring after the DCI transmission of the serving cells.
摘要:
Methods, apparatuses, and systems are described related to mapping special subframes in a wireless communication network. In embodiments, an eNB may assign demodulation reference signals (DM-RSs) and/or cell-specific reference signals (CRSs) to a downlink pilot time slot (DwPTS) of a special subframe responsive to a determined configuration of the special subframe. In embodiments, an eNB may bundle the DwPTS or an uplink pilot time slot (UpPTS) of the special subframe with another subframe for scheduling. In embodiments, a UE may estimate a channel associated with the special subframe based on DM-RSs and/or CRSs transmitted in another subframe. In embodiments, an eNB may exclude the DwPTS from scheduling for certain special subframe configurations if a new carrier type (NCT) is used. In embodiments, an eNB may exclude certain special subframe configurations from use for NCT communications. Other embodiments may be described and claimed.
摘要:
A user equipment (UE) for time division duplex (TDD) communication through a wireless communication channel has a receiver to receive a channel state information reference signal (CSI-RS) subframe configuration value, a CSI-RS configuration value, and a CSI-RS; and circuitry to determine a subframe index corresponding to a temporal position of a special subframe including the CSI-RS; determine a CSI-RS pattern of one or more orthogonal frequency division modulation (OFDM) resource elements carrying the CSI-RS, the pattern being from among a group of CSI-RS patterns that include OF DM resource elements in OFDM symbols corresponding to a physical downlink control channel (PDCCH) region of a legacy LTE wireless communication channel; control the receiver to receive the special subframe carrying the CSI-RS during the temporal position and at the one or more OFDM resource elements of the CSI-RS pattern; and measure the wireless communication channel based on the CSI-RS.
摘要:
Methods, systems, and storage media for providing and/or obtaining feedback for data transmissions in an unlicensed shared medium are described. In embodiments, an apparatus may include radio control circuitry to demodulate and decode a data transmission from an evolved node B (eNB). The apparatus may include and processing circuitry, coupled with the radio control circuitry, and the processing circuitry is to receive the data transmission from the radio control circuitry and generate feedback based on the data transmission. The radio control circuitry may also control radio-frequency circuitry to determine whether a physical channel in an unlicensed shared medium is unoccupied, and transmit the feedback to the eNB over the physical channel when the physical channel is unoccupied according to the determination. Other embodiments may be described and/or claimed.