摘要:
A metal-insulator-semiconductor field effect transistor using an undoped AlGaAs layer as an insulator over an n-type GaAs channel. The high breakdown field of the wide-bandgap AlGaAs results in a very high gate breakdown voltage and a low prebreakdown gate leakage current. The presence of the gate insulator also reduces the gate capacitance, Cgs. Moreover, the electron density in the channel is not all concentrated next to the heterojunction, which means that the series resistance of the channel is low, and also means that channel mobility will not be degraded by a less-than-perfect interface at the heterojunction.
摘要:
Preferred embodiments include a microwave power MISFET (30) with a thin GaAS channel (54) bounded by an undoped Al.sub.x Ga.sub.1-x As gate insulator (44) and a doped Al.sub.y Ga.sub.1-y As barrier (40). Under forward bias the channel (54) forms a quantum well which accumulates electrons and thereby increase maximum current and power handling without degrading breakdown voltage of the heterostructure MISFET An additional active layer (36) can be included on the other side of the barrier (40) to further increase power handling. Other embodiments include use of a strained layer In.sub.z Ga.sub.1-z As channel.
摘要翻译:优选实施例包括具有由未掺杂的Al x Ga 1-x As栅极绝缘体(44)和掺杂的Al y Ga 1 -AsAs势垒(40)限定的薄GaAS沟道(54)的微波功率MISFET(30)。 在正向偏压下,通道(54)形成量子阱,其累积电子,从而增加最大电流和功率处理,而不降低异质结MISFET的击穿电压。另外的有源层(36)可以包含在屏障(40)的另一侧 )进一步增加功率处理。 其他实施例包括使用应变层InzGa1-zAs通道。
摘要:
A travelling-wave transistor structure (50) with the input and output transmission lines (54,58) terminated with unmatched impedances (70,72,74;80,82,84) to improve high-frequency response by reflection and phase shift to provide constructive interference is disclosed. Preferred embodiments include a .pi.-gate (52,56) MESFET structure travelling-wave transistor with many periodically spaced gate feeding fingers (56) connecting gate (52) to gate transmission line (54) which parallels gate (52). This provides a compact structure and has large advantages at millimeter wave frequencies. Source (60) may be grounded by vias (61) or may pass over gate transmission line (54) by air bridges to a ground on the same surface as the MESFET.
摘要:
A circuit for compensating for the phase velocity differences caused by the layout arrangement of a high-frequency transistor circuit comprises a shunt reactive element 60 coupled to an input or output terminal 51 of a first transistor 48 in a sequence of transistors arranged between input 42 and output 54 transmission lines. The shunt reactive element provides adjustment in phase such that signals traversing various routes through the circuit add in phase at the circuit output. The circuit may also include series resonant circuits 102 between the input terminals 44 and 46 of transistors in such a sequence and between output terminals 51 and 52 of transistors in such a sequence. The series resonant circuits appear as short circuits at certain frequencies and thereby may be used to virtually eliminate the phase progression along transmission lines linking transistors in the sequence.
摘要:
A GaAs monolithic waveguide switch and system for low power consumption and high frequency switching wherein a single GaAs chip is flip-chip mounted onto a waveguide slot and inserted between interconnecting waveguides to provide single pole single throw switching. The GaAs chip includes an array of MESFETs along with connecting electrodes configured to provide low loss in the biased state and high loss in the unbiased state. The use of a single GaAs monolithic chip provides improved RF performance and manufacturability over discrete devices and provides lower power consumption as compared with silicon PIN diode waveguide switches.
摘要:
A microwave oscillator circuit having an antenna, wherein the effective reactive impedance of the oscillator circuit is altered by the movement of a reactive impedance changing element past the antenna to cause change of the oscillation condition of the oscillator. A change in oscillation condition is sensed and sent to a utilization device to determine speed and/or position. The utilization device can be a computer which receives a signal from a wheel speed determining system, wherefrom a signal is sent back to a braking system for the wheel to control braking thereof. This can be accomplished individually for each of the four wheels to provide an anti-locking braking system.
摘要:
A flip-chip integrated circuit having passive 302, 304, 306 as well as active 308, 310 components on a frontside surface of a substrate. The active devices have airbridges which contact a heatsink to provide heat dissipation from the junctions of the devices.
摘要:
A collector-up bipolar transistor having an undercut region (522) beneath extrinsic regions of a base layer (510) and an emitter layer (508). The extrinsic emitter region is depleted of charge carriers and provides passivation for the extrinsic portion of the base layer (508). Contact to the emitter layer may be made by forming contacts on the top surface of the substrate (500) or in a recess in the backside of the substrate.
摘要:
A flip-chip integrated circuit 1100 having a transistor 1108 formed at a frontside surface of a substrate 1104. An airbridge 1106 may be formed over portions of the transistor wherein a top surface of the airbridge is spaced from the frontside surface by a distance approximately equal to, or greater than, the thickness of the substrate. The circuit may also include a transmission line 1114 at the frontside surface and a heatsink 1102 coupled to the airbridge.
摘要:
This is a FET device and the device comprises: a buffer layer 30; a channel layer 32 of doped narrow bandgap material over the buffer layer; and a resistive layer 34 of low doped wide bandgap material over the channel layer, the doping of the channel layer and the resistive layer being such that no significant transfer of electrons occurs between the resistive layer and the channel layer. This is also a method of making a FET device.