摘要:
Provided are an inverter, a method of manufacturing the inverter, and a logic circuit including the inverter. The inverter may include a first transistor and a second transistor having different channel layer structures. A channel layer of the first transistor may include a lower layer and an upper layer, and a channel layer of the second transistor may be the same as one of the lower layer and the upper layer. At least one of the lower layer and the upper layer may be an oxide layer. The inverter may be an enhancement/depletion (E/D) mode inverter or a complementary inverter.
摘要:
Provided are an inverter, a method of manufacturing the inverter, and a logic circuit including the inverter. The inverter may include a first transistor and a second transistor having different channel layer structures. A channel layer of the first transistor may include a lower layer and an upper layer, and a channel layer of the second transistor may be the same as one of the lower layer and the upper layer. At least one of the lower layer and the upper layer may be an oxide layer. The inverter may be an enhancement/depletion (E/D) mode inverter or a complementary inverter.
摘要:
Provided are an inverter, a method of manufacturing the inverter, and a logic circuit including the inverter. The inverter may include a first transistor and a second transistor having different channel layer structures. A channel layer of the first transistor may include a lower layer and an upper layer, and a channel layer of the second transistor may be the same as one of the lower layer and the upper layer. At least one of the lower layer and the upper layer may be an oxide layer. The inverter may be an enhancement/depletion (E/D) mode inverter or a complementary inverter.
摘要:
Provided are an inverter, a method of manufacturing the inverter, and a logic circuit including the inverter. The inverter may include a first transistor and a second transistor having different channel layer structures. A channel layer of the first transistor may include a lower layer and an upper layer, and a channel layer of the second transistor may be the same as one of the lower layer and the upper layer. At least one of the lower layer and the upper layer may be an oxide layer. The inverter may be an enhancement/depletion (E/D) mode inverter or a complementary inverter.
摘要:
Example embodiments provide a nonvolatile memory device that may be integrated through stacking, a stack module, and a method of fabricating the nonvolatile memory device. In the nonvolatile memory device according to example embodiments, at least one bottom gate electrode may be formed on a substrate. At least one charge storage layer may be formed on the at least one bottom gate electrode, and at least one semiconductor channel layer may be formed on the at least one charge storage layer.
摘要:
Example embodiments provide a nonvolatile memory device that may be integrated through stacking, a stack module, and a method of fabricating the nonvolatile memory device. In the nonvolatile memory device according to example embodiments, at least one bottom gate electrode may be formed on a substrate. At least one charge storage layer may be formed on the at least one bottom gate electrode, and at least one semiconductor channel layer may be formed on the at least one charge storage layer.
摘要:
The present invention discloses a semiconductor device, which comprises a substrate, a gate stack structure on the substrate, a channel region in the substrate under the gate stack structure, and source and drain regions at both sides of the channel region, wherein there is a stressed layer under and at both sides of the channel region, in which the source and drain regions are formed. According to the semiconductor device and the method for manufacturing the same of the present invention, a stressed layer is formed at both sides of and under the channel region made of a silicon-based material so as to act on the channel region, thereby effectively increasing the carrier mobility of the channel region and improving the device performance.
摘要:
A method for manufacturing a dual metal CMOS device comprising: forming a first type metal work function modulation layer in the first gate trench and the second gate trench; forming a second type work function metal diffusion source layer in the first gate trench and the second gate trench; forming a heat isolation layer that shields the region of the first type device; and thermally annealing the regions where the first type device and the second type device are located.
摘要:
The present invention discloses a semiconductor device, comprising substrates, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer; Each of the second gate stack structures comprises a second gate insulating layer, a first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the first work function metal layer has a first stress, and the gate filling layer has a second stress. Two metal gate layers of different types and/or intensity of stress are formed, respectively, thus different stresses are applied to the channel regions of different MOSFETs effectively and accurately, the device carrier mobility is enhanced simply and efficiently, and the device performance is also enhanced.
摘要:
A semiconductor device, which comprises: a semiconductor substrate; a channel region on the semiconductor substrate, said channel region including a quantum well structure; a source region and a drain region on the sides of the channel region; a gate structure on the channel region; wherein the materials for the channel region, the source region and the drain region have different energy bands, and a tunneling barrier structure exists between the source region and the channel region.