摘要:
An electron emitter that includes a metal film having a set of layers that are selected and arranged to adhere the metal film to a remainder of a structure of the electron emitter while avoiding electron loss in the metal film. A multiple layer metal film according to the present techniques enables a balance among adhesion properties, metal diffusion, and oxide properties that might otherwise hinder the performance of an electron emitter.
摘要:
A method is presented for forming pores within a central area of a semi-conductive or conductive surface. The method includes forming a semi-conductive or conductive surface on a substrate. This semi-conductive or conductive surface is formed in a manner ensuring that upon application of an electric field at the semi-conductive or conductive surface an intensity of the electric field at a central area of the surface is at least as great as an intensity of the electric field at a perimeter of the surface. Finally, the method includes anodizing the semi-conductive or conductive surface by generating the electric field at the semi-conductive or conductive surface to form a porous region within the semi-conductive or conductive surface.
摘要:
An electron source includes a planar emission region for generating an electron emission, and a focusing structure for focusing the electron emission into an electron beam.
摘要:
An ultra-high-density data storage device that includes at least one energy beam emitter and a data storage medium that itself includes an organic material. The organic material may include one or more Langmuir-Blodgett layers and may include a conductive polymer. Localized presence or absence of localized disorder in the Langmuir-Blodgett layers may be used to detect data bits formed in the data storage medium. The presence or absence of one-dimensional conductivity in the organic material may also be used to read data bits formed in the data storage medium.
摘要:
An electron emission device with nano-protrusions is described. Electrons are emitted from the nano-protrusions and directed by one or more conductors into beams. The beams may be shaped to be collimated, diverged, or converged. The shaped beams from one or more nano-protrusions may be focused onto a target spot through the use of additional electron optics.
摘要:
A field emission device, which among other things may be used within an ultra-high density storage system, is disclosed. The emitter device includes an emitter electrode, an extractor electrode, and a solid-state field controlled emitter that utilizes a Schottky metal-semiconductor junction or barrier. The Schottky metal-semiconductor barrier is formed on the emitter electrode and electrically couples with the extractor electrode such that when an electric potential is placed between the emitter electrode and the extractor electrode, a field emission of electrons is generated from an exposed surface of the semiconductor layer. Further, the Schottky metal may be selected from typical conducting layers such as platinum, gold, silver, or a conductive semiconductor layer that is able to provide a high electron pool at the barrier. The semiconductor layer placed on the Schottky metal is typically very weakly conductive of n-type and has a wide band gap in order to create conditions conducive to creating induced negative electron affinity at applied fields necessary to provide electron emission. One type of wide band-gap material can be selected from titanium dioxide or titanium nitride or other comparable materials.
摘要:
A field emission device, which among other things may be used within an ultra-high density storage system, is disclosed. The emitter device includes an emitter electrode, an extractor electrode, and a solid-state field controlled emitter that utilizes a Schottky metal-semiconductor junction or barrier. The Schottky metal-semiconductor barrier is formed on the emitter electrode and electrically couples with the extractor electrode such that when an electric potential is placed between the emitter electrode and the extractor electrode, a field emission of electrons is generated from an exposed surface of the semiconductor layer. Further, the Schottky metal may be selected from typical conducting layers such as platinum, gold, silver, or a conductive semiconductor layer that is able to provide a high electron pool at the barrier. The semiconductor layer placed on the Schottky metal is typically very weakly conductive of n-type and has a wide band gap in order to create conditions conducive to creating induced negative electron affinity at applied fields necessary to provide electron emission. One type of wide band-gap material can be selected from titanium dioxide or titanium nitride or other comparable materials.
摘要:
An electron source includes a planar emission region for generating an electron emission, and a focusing structure for focusing the electron emission into an electron beam.
摘要:
An electron source includes a planar emission region for generating an electron emission, and a focusing structure for focusing the electron emission into an electron beam.
摘要:
A field emission device, which among other things may be used within an ultra-high density storage system, is disclosed. The emitter device includes an emitter electrode, an extractor electrode, and a solid-state field controlled emitter that utilizes a Schottky metal-semiconductor junction or barrier. The Schottky metal-semiconductor barrier is formed on the emitter electrode and electrically couples with the extractor electrode such that when an electric potential is placed between the emitter electrode and the extractor electrode, a field emission of electrons is generated from an exposed surface of the semiconductor layer. Further, the Schottky metal may be selected from typical conducting layers such as platinum, gold, silver, or a conductive semiconductor layer that is able to provide a high electron pool at the barrier. The semiconductor layer placed on the Schottky metal is typically very weakly conductive of n-type and has a wide band gap in order to create conditions conducive to creating induced negative electron affinity at applied fields necessary to provide electron emission. One type of wide band-gap material can be selected from titanium dioxide or titanium nitride or other comparable materials.