摘要:
Methods to pattern features in a substrate layer by exposing a photoresist layer more than once. In one embodiment, a single reticle may be exposed more than once with an overlay offset implemented between successive exposures to reduce the half pitch of the reticle. In particular embodiments, these methods may be employed to reduce the half pitch of the features printed with 65 nm generation lithography equipment to achieve 45 nm lithography generation CD and pitch performance.
摘要:
Methods to etch features in a substrate with a multi-layered double patterning mask. The multi-layered double patterning mask includes a carbonaceous mask layer, a first cap layer on the carbonaceous mask layer and a second cap layer on the first cap layer. After forming the multi-layered mask, a first lithographically defined pattern is etched into the second cap layer. A double pattern that is a composition of the first lithographically defined pattern etched in the second cap layer and a second lithographically defined pattern is then etched into the first cap layer and the carbonaceous mask layer. The double pattern formed in the carbonaceous mask layer is then transferred to a substrate layer and any portion of the multi-layered mask remaining is then removed.
摘要:
A method and apparatus are provided to form spacer materials adjacent substrate structures. In one embodiment, a method is provided for processing a substrate including placing a substrate having a substrate structure adjacent a substrate surface in a deposition chamber, depositing a spacer layer on the substrate structure and substrate surface, and etching the spacer layer to expose the substrate structure and a portion of the substrate surface, wherein the spacer layer is disposed adjacent the substrate structure. The spacer layer may comprise a boron nitride material. The spacer layer may comprise a base spacer layer and a liner layer, and the spacer layer may be etched in a two-step etching process.
摘要:
A method and apparatus are provided to form spacer materials adjacent substrate structures. In one embodiment, a method is provided for processing a substrate including placing a substrate having a substrate structure adjacent a substrate surface in a deposition chamber, depositing a spacer layer on the substrate structure and substrate surface, and etching the spacer layer to expose the substrate structure and a portion of the substrate surface, wherein the spacer layer is disposed adjacent the substrate structure. The spacer layer may comprise a boron nitride material. The spacer layer may comprise a base spacer layer and a liner layer, and the spacer layer may be etched in a two-step etching process.
摘要:
Methods for patterning films and their resulting structures. In an embodiment, an amorphous carbon mask is formed over a substrate, such as a damascene layer. A spacer layer is deposited over the amorphous carbon mask and the spacer layer is etched to form a spacer and to expose the amorphous carbon mask. The amorphous carbon mask is removed selectively to the spacer to expose the substrate layer. A gap fill layer is deposited around the spacer to cover the substrate layer but expose the spacer. The spacer is removed selectively to form a gap fill mask over the substrate. The pattern of the gap fill mask is transferred, in one implementation, into a damascene layer to remove at least a portion of an IMD and form an air gap.
摘要:
Methods for patterning films and their resulting structures. In an embodiment, an amorphous carbon mask is formed over a substrate, such as a damascene layer. A spacer layer is deposited over the amorphous carbon mask and the spacer layer is etched to form a spacer and to expose the amorphous carbon mask. The amorphous carbon mask is removed selectively to the spacer to expose the substrate layer. A gap fill layer is deposited around the spacer to cover the substrate layer but expose the spacer. The spacer is removed selectively to form a gap fill mask over the substrate. The pattern of the gap fill mask is transferred, in one implementation, into a damascene layer to remove at least a portion of an IMD and form an air gap.
摘要:
A method and apparatus for forming magnetic media substrates is provided. A patterned resist layer is formed on a substrate having a magnetically susceptible layer. A conformal protective layer is formed over the patterned resist layer to prevent degradation of the pattern during subsequent processing. The substrate is subjected to an energy treatment wherein energetic species penetrate portions of the patterned resist and conformal protective layer according to the pattern formed in the patterned resist, impacting the magnetically susceptible layer and modifying a magnetic property thereof. The patterned resist and conformal protective layers are then removed, leaving a magnetic substrate having a pattern of magnetic properties with a topography that is substantially unchanged.
摘要:
A method of etching a substrate is provided. The method of etching a substrate includes transferring a pattern into the substrate using a double patterned amorphous carbon layer on the substrate as a hardmask. Optionally, a non-carbon based layer is deposited on the amorphous carbon layer as a capping layer before the pattern is transferred into the substrate.
摘要:
A method for fabricating a semiconductor mask is described. A semiconductor stack having a sacrificial mask and a spacer mask is first provided. The sacrificial mask is comprised of a series of lines and the spacer mask has spacer lines adjacent to the sidewalls of the series of lines. Next, the spacer mask is cropped. Finally, the sacrificial mask is removed to provide a cropped spacer mask. The cropped spacer mask doubles the frequency of the series of lines of the sacrificial mask.
摘要:
A method for fabricating a semiconductor mask is described. A semiconductor stack having a sacrificial mask and a spacer mask is first provided. The sacrificial mask is comprised of a series of lines and the spacer mask has spacer lines adjacent to the sidewalls of the series of lines. Next, the spacer mask is cropped. Finally, the sacrificial mask is removed to provide a cropped spacer mask. The cropped spacer mask doubles the frequency of the series of lines of the sacrificial mask.