摘要:
Embodiments herein present a structure and method to make a CMOS with dual metal gates. Specifically, the CMOS comprises a first gate comprising a first metal and a second gate comprising a second metal. The first gate comprises a portion of a first transistor that is complementary to a second transistor that includes the second gate, wherein the first gate and the second gate are situated on the same substrate. Furthermore, the first metal produces a first threshold voltage characteristic, wherein the first metal comprises tantalum. The second metal produces a second threshold voltage characteristic that differs from the first threshold voltage characteristic, wherein the second metal comprises tungsten.
摘要:
Embodiments herein present a structure and method to make a CMOS with dual metal gates. Specifically, the CMOS comprises a first gate comprising a first metal and a second gate comprising a second metal. The first gate comprises a portion of a first transistor that is complementary to a second transistor that includes the second gate, wherein the first gate and the second gate are situated on the same substrate. Furthermore, the first metal produces a first threshold voltage characteristic, wherein the first metal comprises tantalum. The second metal produces a second threshold voltage characteristic that differs from the first threshold voltage characteristic, wherein the second metal comprises tungsten.
摘要:
A CMOS structure and a method for fabricating the CMOS structure include a first transistor located within a first semiconductor substrate region having a first polarity. The first transistor includes a first gate electrode that includes a first metal containing material layer and a first silicon containing material layer located upon the first metal containing material layer. The CMOS structure also includes a second transistor located within a laterally separated second semiconductor substrate region having a second polarity that is different than the first polarity. The second transistor includes a second gate electrode comprising a second metal containing material layer of a composition that is different than the first metal containing material layer, and a second silicon containing material layer located upon the second metal containing material layer. The first silicon containing material layer and the first semiconductor substrate region comprise different materials. The second silicon containing material layer and the second semiconductor substrate region also comprise different materials.
摘要:
A CMOS structure and a method for fabricating the CMOS structure include a first transistor located within a first semiconductor substrate region having a first polarity. The first transistor includes a first gate electrode that includes a first metal containing material layer and a first silicon containing material layer located upon the first metal containing material layer. The CMOS structure also includes a second transistor located within a laterally separated second semiconductor substrate region having a second polarity that is different than the first polarity The second transistor includes a second gate electrode comprising a second metal containing material layer of a composition that is different than the first metal containing material layer, and a second silicon containing material layer located upon the second metal containing material layer. The first silicon containing material layer and the first semiconductor substrate region comprise different materials. The second silicon containing material layer and the second semiconductor substrate region also comprise different materials.
摘要:
The present invention relates to enhancing MOSFET performance with the corner stresses of STI. A method of manufacturing a MOS device comprises the steps of: providing a semiconductor substrate; forming trenches on the semiconductor substrate and at least a pMOS region and at least an nMOS region surrounded by the trenches; filling the trenches with a dielectric material having a stress; removing at least the dielectric material having a stress in the trenches which is adjacent to a position where a channel is to be formed on each of the pMOS and nMOS regions so as to form exposed regions; filling the exposed regions with a insulating material; and forming pMOS and nMOS devices on the pMOS region and the nMOS region, respectively, wherein each of the pMOS and nMOS devices comprises a channel, a gate formed above the channel, and a source and a drain formed at both sides of the channel; wherein in a channel length direction, the boundary of each exposed region is substantially aligned with the boundary of the position of the channel, or the boundary of each exposed region extends along the channel length direction to be aligned with the boundary of corresponding pMOS or nMOS region.
摘要:
The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises: an SOI wafer comprising a semiconductor substrate, a buried insulation layer, and a semiconductor layer, wherein the buried insulation layer is disposed on the semiconductor substrate, and the semiconductor layer is disposed on the buried insulation layer; a plurality of MOSFETs being formed adjacently to each other in the SOI wafer, wherein each of the MOSFETs comprises a respective backgate being formed in the semiconductor substrate; and a plurality of shallow trench isolations, each of which being formed between respective adjacent MOSFETs to isolate the respective adjacent MOSFETs from each other, wherein the respective adjacent MOSFETs share a common backgate isolation region under and in direct contact with the respective backgate in the semiconductor substrate, and a PNP junction or an NPN junction is formed by the common backgate isolation region and the respective backgate of the respective adjacent MOSFETs. According to the present disclosure, respective backgates of two adjacent MOSFETs are isolated from each other by the shallow trench isolation. Furthermore, the two adjacent MOSFETs are also isolated from each other by the PNP or NPN junction formed by the respective backgates of the two adjacent MOSFETs and the common backgate isolation. As a result, this device structure has a better insulation effect over the prior art MOSFET and it greatly reduces the possibility of breakthrough.
摘要:
The present application discloses a non-volatile memory device, comprising a semiconductor fin on an insulating layer; a channel region at a central portion of the semiconductor fin; source/drain regions on both sides of the semiconductor fin; a floating gate arranged at a first side of the semiconductor fin and extending in a direction further away from the semiconductor fin; and a first control gate arranged on top of the floating gate or covering top and sidewall portions of the floating gate. The non-volatile memory device reduces a short channel effect, has an increased memory density, and is cost effective.
摘要:
The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET is formed on an SOI wafer, comprising: a shallow trench isolation for defining an active region in the semiconductor layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; a channel region in the semiconductor layer and sandwiched by the source region and the drain region; a back gate in the semiconductor substrate; a first dummy gate stack overlapping with a boundary between the semiconductor layer and the shallow trench isolation; and a second dummy gate stack on the shallow trench isolation, wherein the MOSFET further comprises a plurality of conductive vias which are disposed between the gate stack and the first dummy gate stack and electrically connected to the source region and the drain region respectively, and between the first dummy gate stack and the second dummy gate stack and electrically connected to the back gate. The MOSFET avoids short circuit between the back gate and the source/drain regions by the dummy gate stacks.
摘要:
A semiconductor structure and a method for forming the same are provided. The structure comprises a semiconductor substrate (100) with an nMOSFET region (102) and a pMOSFET region (104) on it. An nMOSFET structure and a pMOSFET structure are formed in the nMOSFET region (102) and the pMOSFET region (104), respectively. The nMOSFET structure comprises a first channel region (182) formed in the nMOSFET region (102) and a first gate stack formed in the first channel region (182). The nMOSFET structure is covered with a compressive-stressed material layer (130) to apply a tensile stress to the first channel region (182). The pMOSFET structure comprises a second channel region (184) formed in the pMOSFET region (104) and a second gate stack formed in the second channel region (184). The pMOSFET structure is covered with a tensile-stressed material layer (140) to apply a compressive stress to the second channel region (184).
摘要:
Vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with vertical stacks of a metal portion and a semiconductor portion formed on a second substrate. Alternately, vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with metal portions formed on a second substrate. The assembly of the first and second substrates is subjected to an anneal at a temperature that induces formation of a metal semiconductor alloy derived from the semiconductor portions and the metal portions. The first substrate and the second substrate are bonded through metal semiconductor alloy portions that adhere to the first and second substrates.