Abstract:
A circuit and method for level-shifting an input signal are disclosed that provide for level-shifting of a the input signal where an external voltage level is greater than an internal voltage of the signal. In the present invention, the input signal is compared to a reference signal to produce a differential current signal reflecting the logic level of the input signal. The differential current signal is reflected through a pair of current mirrors operating from the external voltage level to drive a pair of resistive loads. Each of the resistive loads is coupled in series with a current sink between the internal supply voltage and a ground voltage. As a result, the input signal may be received and level-shifted with gain even when the internal supply voltage is less than twice a transistor threshold voltage without introducing significant distortion to the received signal.
Abstract:
A circuit and method for level-shifting an input signal are disclosed that provide for level-shifting of a the input signal where an external voltage level is greater than an internal voltage of the signal. In the present invention, the input signal is compared to a reference signal to produce a differential current signal reflecting the logic level of the input signal. The differential current signal is reflected through a pair of current mirrors operating from the external voltage level to drive a pair of resistive loads. Each of the resistive loads is coupled in series with a current sink between the internal supply voltage and a ground voltage. As a result, the input signal may be received and level-shifted with gain even when the internal supply voltage is less than twice a transistor threshold voltage without introducing significant distortion to the received signal.
Abstract:
An integrated circuit device having a select circuit, a summing circuit and a phase mixer. The select circuit selects one of a plurality of offset values as a selected offset. The summing circuit sums the selected offset with a phase count value, the phase count value indicating a phase difference between a reference clock signal and a first plurality of clock signals. The phase mixer combines the first plurality of clock signals in accordance with the sum of the selected offset and the phase count value to generate an output clock signal.
Abstract:
A circuit and method for synchronized clocking of components such as registers. Registers are clocked by individual component clock signals having the same frequency but potentially different phases due to differing propagation delays. Separate component clock signals are received by registers are brought into phase by evaluating the phases of the component clock signals at the registers, and synchronizing the component clock signal of each register to that of the previous register in a sequence.
Abstract:
A circuit and method for synchronized clocking of components such as registers. Registers are clocked by individual component clock signals having the same frequency but potentially different phases due to differing propagation delays. Separate component clock signals are received by registers are brought into phase by evaluating the phases of the component clock signals at the registers, and synchronizing the component clock signal of each register to that of the previous register in a sequence.
Abstract:
A circuit and method for synchronized clocking of components such as registers. Registers are clocked by individual component clock signals having the same frequency but potentially different phases due to differing propagation delays. Separate component clock signals are received by registers are brought into phase by evaluating the phases of the component clock signals at the registers, and synchronizing the component clock signal of each register to that of the previous register in a sequence.
Abstract:
Described are methods and systems for distributing low-skew, predictably timed clock signals. A clock distribution network includes a plurality of dynamically adjustable clock buffers. A control circuit connected to each clock buffer controls the delays through the clock buffers in response to process, voltage, and temperature variations, and consequently maintains a relatively constant signal-propagation delay through the network. In one embodiment, each clock buffer includes skew-offset circuitry that adds to or subtracts from the PVT compensated delay values provided by the PVT control circuit to simplify clock skew minimization.
Abstract:
A system and method for configuring a receiver such that the duty cycle of the receiver clock accurately matches the duty cycle of the data signal received. This adaptive system and method calibrates a receiver's duty cycle to optimize the receiver timing margin for different data signal types and different slave devices. In one embodiment, a duty cycle correction circuit matches the receiver clock to a predetermined duty cycle. The receiver clock is then configured to have a duty cycle skewed from the predetermined duty cycle based on the specific data signal received. In a receiver system utilizing a clock tree, individual branches of the clock tree are configured to have respective duty cycles skewed to match the duty cycle of a data signal received from a specific transmitting device.
Abstract:
A circuit and method for interfacing to a bus via an on-die termination pad are shown. The present invention derives an output low reference voltage from an external terminating voltage and an external reference voltage corresponding to the middle of a logic voltage range. A feedback loop is used to compare a voltage at the pad to the output low reference voltage. An on-die termination current sourced to the pad is adjusted accordingly. This allows the present invention to adapt to a variety of external termination voltages. Further, the output low reference voltage is utilized to generate a reference current sourced to an output amplifier, which causes the output swing of the amplifier to track along with the external terminating voltage and the external reference voltage. In another aspect of the present invention, an alternating pattern of logic high and logic low voltage values is transmitted at the pad and received. The received data pattern is compared to the transmitted data pattern to adjust the on-die termination current and the reference current.
Abstract:
A PLL circuit and method provides an adjustable operating frequency range by using at least two VCOs. In an embodiment of the present invention, circuit components of a PLL are adjusted in order to obtain a selected frequency range. In particular, a gain of a charge pump and resistance of a filter is adjusted responsive to a control signal. In alternate embodiments of the present invention, a voltage regulator, including an operational amplifier, is coupled to the output of the filter and the respective inputs of two VCOs. An output multiplexer then selects a VCO output responsive to the control signal. In another embodiment of the present invention, a multiplexer is coupled to the output of the voltage regulator to select which VCO receives a buffered voltage. In another embodiment of the present invention, respective operational amplifiers that may be enabled or disabled responsive to the control signal are coupled to a filter output and respective VCO inputs in order to provide an adjustable frequency range.