Abstract:
A light emitting diode (LED) package is disclosed. The LED package includes a lead frame comprising a thermal pad and at least two electrode pads disposed at a distance from the thermal pad; at least one LED mounted on the thermal pad and electrically connected with the at least two electrode pads through a wire; a package mold comprising a first cavity to receive the thermal pad and the at least two electrode pads and to partially expose the thermal pad and the at least two electrode pads through a first surface of the package mold, the first surface on which the at least one LED is mounted, and exposing the thermal pad and the at least two electrode pads through a surface coplanar with a second surface opposite to the first surface; and a molding unit disposed in the first cavity.
Abstract:
There is provided an alternating current (AC) driven light emitting device including a plurality of LED arrays connected in series, each having a structure in which a plurality of LEDs are electrically connected to form a two-terminal circuit and emit light by a bidirectional voltage when an AC voltage is applied to the two-terminal circuit; and a switching device connected to at least one of the plurality of LED arrays and controlling a total driving voltage with respect to the plurality of LED arrays. The AC driven light emitting device permits operation from a low driving voltage Vf while having a high driving voltage at a high voltage Vf, thereby achieving excellence in terms of power factor, THD, and energy efficiency.
Abstract:
There is provided an LED driving circuit. The LED driving circuit according to an aspect of the invention may include: at least one ladder circuit including: (n−1) number (here, n is a positive integer satisfying n≧2) of first branches provided between first and second junction points, and connected in-line with each other by n number of first middle junction points, (n−1) number of second branches arranged in parallel with the first branches, and connected in-line with each other by n number of second middle junction points between the first and second junction points, and n number of middle branches connecting m-th first and second middle junction points to each other, wherein at least one LED device is disposed on each of the first, second, and middle branches. Here, the number of LED devices included in each of the first and second branches is greater than the number of LED devices included in each of the middle branches.
Abstract:
Provided is a ceramic package for headlamp, and a headlamp module having the same. The ceramic package for headlamp includes a body part, a pair of internal electrodes, and an electrode exposing part. The body part has a cavity formed therein. The cavity is upwardly opened to expose a light emitting diode mounted on a mounting part. The pair of internal electrodes in the body part is electrically connected to the light emitting diode. The electrode exposing part is stepped at either side of the body part to upwardly expose the internal electrode to the outside.
Abstract:
Provided is an alternating current (AC) driven light emitting device, including: a plurality of half-wave driving units respectively having at least one light emitting diode (LED) and provided in a loop connecting respective half-wave driving unit terminals; and at least one full-wave driving unit having at least one LED and connecting one node between two of the plurality of half-wave driving units to another node between another two of the plurality of half-wave driving units, at least one of the half-wave driving unit and the full-wave driving unit having a parallel connection structure of at least two LEDs. An array of LEDs appropriate to being drivable by AC is provided to secure reliability in error in operation of some LEDs.
Abstract:
Disclosed are an LED package, an LED package module having the same and a manufacturing method thereof, and a head lamp module having the same and a control method thereof. The light emitting diode package includes: a package substrate; a light emitting diode chip mounted on one surface of the package substrate; an electrode pad formed on the other surface of the package substrate and electrically connected to the light emitting diode chip; and a heat radiation pad formed on the other surface of the package substrate and electrically insulated from the electrode pad.
Abstract:
There is provided a headlight for a vehicle. The headlight uses a light emitting device as a light source, so that light intensity can be enhanced and rectangular beams without discontinuity can be emitted, thereby enhancing light distribution characteristic.
Abstract:
A semiconductor device and methods directed toward preventing a leakage current between a contact plug and a line adjacent to the contact plug, and minimizing capacitance between adjacent lines.
Abstract:
A metal suicide layer is fabricated in a semiconductor device. A first metal layer is deposited on a silicon substrate formed with an S interlayer dielectric having a contact hole through PVD. A second metal layer is deposited on the first metal layer through any one of CVD and ALD. Annealing is performed on the silicon substrate which is formed with the first and second metal layers to form the metal silicide. The portions of the second metal layer and the first metal layer which have not reacted during annealing are removed.
Abstract:
A multi-layer metal wiring of a semiconductor device and a method for forming the same are disclosed. The multi-layer metal wiring of the semiconductor device includes a lower Cu wiring, and an upper Al wiring formed to be contacted with the lower Cu wiring, and a diffusion barrier layer interposed between the lower Cu wiring and the upper Al wiring. The diffusion barrier layer is formed of a W-based layer.