摘要:
Disclosed are a gas sensor, and a method of manufacturing and using the same. The method includes: forming a detection material on a heater; coating an encapsulant on the detection material; and heating the heater to remove the encapsulant from the detection material when the gas sensor is operated.
摘要:
Disclosed are an MEMS type semiconductor gas sensor using a microheater having many holes and a method for manufacturing the same. The MEMS type semiconductor gas sensor includes: a substrate of which a central region is etched with a predetermined thickness; a second membrane formed at an upper portion of the central region of the substrate and having many holes; a heat emitting resistor formed on the second membrane and having many holes; a first membrane formed on the second membrane including the heat emitting resistor and having many holes; a sensing electrode formed on the first membrane and having many holes; and a sensing material formed on the sensing electrode.
摘要:
Disclosed are a gas sensor, and a method of manufacturing and using the same. The method includes: forming a detection material on a heater; coating an encapsulant on the detection material; and heating the heater to remove the encapsulant from the detection material when the gas sensor is operated.
摘要:
Disclosed is an electrochemical gas sensor using micro electro mechanical systems (MEMS). The MEMS electrochemical gas sensor includes: a substrate a lower central region of which is etched by a predetermined thickness; a first insulation film formed on the substrate; a heat emitting resistance body formed on the first insulation film; a second insulation film formed on the heat emitting resistance body; a reference electrode formed in an upper central region of the second insulation film; a solid electrolyte formed on the reference electrode; and a detection electrode formed on the solid electrolyte.
摘要:
Disclosed is an electrochemical gas sensor using micro electro mechanical systems (MEMS). The MEMS electrochemical gas sensor includes: a substrate a lower central region of which is etched by a predetermined thickness; a first insulation film formed on the substrate; a heat emitting resistance body formed on the first insulation film; a second insulation film formed on the heat emitting resistance body; a reference electrode formed in an upper central region of the second insulation film; a solid electrolyte formed on the reference electrode; and a detection electrode formed on the solid electrolyte.
摘要:
Provided is a method of manufacturing porous metal oxide, the method including: preparing a metal-organic framework (MOF) wherein an ion of a metal to be used as a catalyst is linked to an organic ligand; impregnating the MOF with a precursor solution of metal oxide to be manufactured; and thermally treating the metal oxide precursor solution-impregnated MOF to remove the organic ligand. The inventive method of manufacturing porous metal oxide involves the impregnation of a metal oxide precursor solution in a MOF wherein metal ions are uniformly linked to organic ligands and the thermal treatment (calcination) of the metal oxide precursor solution-impregnated MOF to remove the organic ligands.
摘要:
Disclosed are a MEMS microphone and a method of manufacturing the same. The MEMS microphone includes: a substrate; a rear acoustic chamber formed inside a front surface of the substrate; a vibrating plate formed on the substrate and having an exhaust hole; a fixed electrode formed on the vibrating plate; and a fixed electrode support supported by a bottom of the rear acoustic chamber and connected to the fixed electrode through the exhaust hole.
摘要:
A method for fabricating an acoustic sensor according to an exemplary embodiment of the present disclosure includes: forming an acoustic sensor unit by forming a lower electrode on an upper portion of a substrate, forming etching holes on the lower electrode, forming a sacrifice layer on an upper portion of the lower electrode, and coupling a diaphragm to an upper portion of the sacrifice layer; coupling a lower portion of the substrate of the acoustic sensor unit to a printed circuit board on which a sound pressure input hole is formed so as to expose the lower portion of the substrate of the acoustic sensor unit to the outside through the sound pressure input hole; attaching a cover covering the acoustic sensor unit on the printed circuit board; etching the substrate of the acoustic sensor unit to form an acoustic chamber; and removing the sacrifice layer.
摘要:
Disclosed is a piezoelectric speaker including: a piezoelectric layer that converts electrical signals into oscillation and outputs sound; an electrode that is formed on a top or a bottom of the piezoelectric layer to apply the electrical signals to the piezoelectric layer; an acoustic diaphragm that is made of a hetero material including a first acoustic diaphragm and a second acoustic diaphragm and is attached to the bottom of the piezoelectric layer on which the electrode is formed; and a frame attached in a form enclosing a side of the acoustic diaphragm.
摘要:
A method for fabricating an acoustic sensor according to an exemplary embodiment of the present disclosure includes: forming an acoustic sensor unit by forming a lower electrode on an upper portion of a substrate, forming etching holes on the lower electrode, forming a sacrifice layer on an upper portion of the lower electrode, and coupling a diaphragm to an upper portion of the sacrifice layer; coupling a lower portion of the substrate of the acoustic sensor unit to a printed circuit board on which a sound pressure input hole is formed so as to expose the lower portion of the substrate of the acoustic sensor unit to the outside through the sound pressure input hole; attaching a cover covering the acoustic sensor unit on the printed circuit board; etching the substrate of the acoustic sensor unit to form an acoustic chamber; and removing the sacrifice layer.