摘要:
Provided is a method of manufacturing porous metal oxide, the method including: preparing a metal-organic framework (MOF) wherein an ion of a metal to be used as a catalyst is linked to an organic ligand; impregnating the MOF with a precursor solution of metal oxide to be manufactured; and thermally treating the metal oxide precursor solution-impregnated MOF to remove the organic ligand. The inventive method of manufacturing porous metal oxide involves the impregnation of a metal oxide precursor solution in a MOF wherein metal ions are uniformly linked to organic ligands and the thermal treatment (calcination) of the metal oxide precursor solution-impregnated MOF to remove the organic ligands.
摘要:
Disclosed is an electrochemical gas sensor using micro electro mechanical systems (MEMS). The MEMS electrochemical gas sensor includes: a substrate a lower central region of which is etched by a predetermined thickness; a first insulation film formed on the substrate; a heat emitting resistance body formed on the first insulation film; a second insulation film formed on the heat emitting resistance body; a reference electrode formed in an upper central region of the second insulation film; a solid electrolyte formed on the reference electrode; and a detection electrode formed on the solid electrolyte.
摘要:
Disclosed are a gas sensor, and a method of manufacturing and using the same. The method includes: forming a detection material on a heater; coating an encapsulant on the detection material; and heating the heater to remove the encapsulant from the detection material when the gas sensor is operated.
摘要:
Disclosed are a gas sensor, and a method of manufacturing and using the same. The method includes: forming a detection material on a heater; coating an encapsulant on the detection material; and heating the heater to remove the encapsulant from the detection material when the gas sensor is operated.
摘要:
Disclosed are an MEMS type semiconductor gas sensor using a microheater having many holes and a method for manufacturing the same. The MEMS type semiconductor gas sensor includes: a substrate of which a central region is etched with a predetermined thickness; a second membrane formed at an upper portion of the central region of the substrate and having many holes; a heat emitting resistor formed on the second membrane and having many holes; a first membrane formed on the second membrane including the heat emitting resistor and having many holes; a sensing electrode formed on the first membrane and having many holes; and a sensing material formed on the sensing electrode.
摘要:
Disclosed is an electrochemical gas sensor using micro electro mechanical systems (MEMS). The MEMS electrochemical gas sensor includes: a substrate a lower central region of which is etched by a predetermined thickness; a first insulation film formed on the substrate; a heat emitting resistance body formed on the first insulation film; a second insulation film formed on the heat emitting resistance body; a reference electrode formed in an upper central region of the second insulation film; a solid electrolyte formed on the reference electrode; and a detection electrode formed on the solid electrolyte.
摘要:
Provided are a method for preparing polymer actuators with high stability and polymer actuators prepared by the method, and more specifically, to a method for preparing polymer actuators with high stability that use low power, are extremely thin, and can be substituted in a motor of a camera module, and polymer actuators prepared by the method. The method includes the steps of: preparing an Ionic Polymer Metal Composite (IPMC) in which metal electrodes are plated on both surfaces of a ionic polymer film; removing water from the ionic polymer film of the IPMC; and expanding the IPMC in a polar solvent that has a higher boiling point and a lower freezing point than water.
摘要:
A polymer actuator containing graphene and a method of preparing the same are provided. The polymer actuator includes an ion-conductive polymer membrane, a metal electrode disposed on both surfaces of the ion-conductive polymer membrane, and graphene dispersed within the ion-conductive polymer membrane. As the graphene is dispersed within the polymer membrane, reverse ion migration due to an osmotic pressure occurring after solvent migration caused by electrostimulation in operation of the actuator can be prevented, and thus drivability of the polymer actuator can be improved.
摘要:
Provided is a convergence control module for a three-dimensional (3D) camera that can be operated with low power to reduce power consumption, which has been a problem in the 3D camera. A 3D camera module includes at least one camera module, a moving guide for supporting the camera module and providing a moving path, a control driver for moving the camera module along the moving guide, and a control unit for controlling the control driver.
摘要:
Metal nanoparticle-polymer composites, a method of manufacturing the same, and a polymer actuator using the same are provided. The method includes synthesizing an organometallic compound as a precursor of metal nanoparticles, preparing a solution mixture containing the organometallic compound and a polymer, and drying and annealing the solution mixture to generate the metal nanoparticle-polymer composite including metal nanoparticles. Thus, highly efficient metal nanoparticle-polymer composite materials may be manufactured with a uniform distribution without synthesizing nanoparticles.