Abstract:
Preparation of a catalyst that comprises an active phase of at least one metal of group VIM that is deposited on an oxide substrate, a) An oxide substrate that comprises alumina, silica, or a silica-alumina is provided; b) The oxide substrate of step a) is impregnated by an aqueous or organic solution that comprises at least one metal salt of group VIM that is selected from among cobalt, nickel, ruthenium, and iron, and then the product that is obtained is dried at a temperature of between 60 and 200° C.; A treatment under water vapor of the solid that is obtained in step b) is carried out at a temperature of between 110 and 195° C. for a length of time of between 30 minutes and 4 hours, in the presence of an air/vapor mixture that comprises between 2 and 50% by volume of water in vapor form.
Abstract:
The present invention relates to a process for the treatment of a plastics pyrolysis oil, comprising: a) the hydrogenation of said feedstock as a mixture with at least a part of the liquid effluent resulting from stage c) and in the presence of hydrogen and of a catalyst at a temperature between 14° and 340° C.; b) the hydrotreating of said hydrogenated effluent in the presence of hydrogen and of a catalyst; c) a separation of the hydrotreated effluent operated at high temperature and high pressure, in order to obtain a gaseous effluent and a liquid effluent, a part of which is recycled upstream of stage a), d) a separation operated at low temperature and high pressure and fed with the gaseous effluent and the other part of the liquid effluent resulting from stage c) and an aqueous solution, in order to obtain a hydrocarbon effluent.
Abstract:
The invention concerns a catalyst containing an active cobalt phase deposited on a support comprising alumina, silica or silica-alumina, said support containing a mixed oxide phase containing cobalt and/or nickel, said catalyst being prepared by introducing at least one dicarboxylic acid comprising at least three carbon atoms. The invention also concerns its use in the field of Fischer-Tropsch synthesis processes.
Abstract:
The invention relates to a process for treating a feedstock comprising a plastics pyrolysis oil and a feedstock derived from renewable sources, comprising:
a) optionally, a step of selective hydrogenation of the feedstock comprising a plastics pyrolysis oil, b) a hydrodemetallization of the feedstock comprising a plastics pyrolysis oil or of the effluent of step a), c) a hydrotreatment of said effluent obtained from step b), and in which said feedstock derived from renewable sources is introduced in step a) and/or in step b) and/or in step c), the weight ratio between the flow rate of the feedstock comprising the plastics pyrolysis oil and the flow rate of feedstock derived from renewable sources introduced being between 0.05 and 20, d) a separation in the presence of an aqueous stream.
Abstract:
A catalyst containing an active phase comprising at least one metal of group VIIIB selected from cobalt, nickel, ruthenium and iron deposited on a support containing silica, alumina and at least one simple spinel MAl2O4 or mixed spinel MxM′(1−x)Al2O4) which is or is not partial, wherein M and M′ are separate metals selected from the group formed by magnesium, copper, cobalt, nickel, tin, zinc, lithium, calcium, caesium, sodium, potassium, iron and manganese, and wherein x is between 0 and 1, the values 0 and 1 being themselves excluded, characterised in that said active phase further comprises boron, the boron content being between 0.001% and 0.5% by weight with respect to the total weight of the catalyst, the value 0.5 being itself excluded.
Abstract:
The present invention relates to a process for treating a plastics pyrolysis oil, comprising:
a) hydrogenation of said feedstock in the presence of at least hydrogen and of at least one hydrogenation catalyst at an average temperature of between 140 and 340° C., the outlet temperature of step a) being at least 15° C. higher than the inlet temperature of step a), to obtain a hydrogenated effluent; b) hydrotreatment of said hydrogenated effluent in the presence of at least hydrogen and of at least one hydrotreatment catalyst, to obtain a hydrotreated effluent, the average temperature of step b) being higher than the average temperature of step a); c) separation of the hydrotreated effluent in the presence of an aqueous stream, at a temperature of between 50 and 370° C., to obtain at least one gaseous effluent, an aqueous liquid effluent and a hydrocarbon-based liquid effluent.
Abstract:
The invention concerns a catalyst containing an active cobalt phase deposited on a support comprising alumina, silica or silica-alumina, said support containing a mixed oxide phase containing cobalt and/or nickel, said catalyst being prepared by introducing at least one organic compound comprising at least one ester function. The invention also concerns its use in the field of Fischer-Tropsch synthesis processes.
Abstract:
Process for preparing a catalyst or a trapping mass comprising the following steps: bringing a porous oxide support into contact with a metal salt comprising at least one metal belonging to groups VIB, VIIB, VIIIB, IB or IIB, of which the melting point of said metal salt is between 20° C. and 150° C., for a period of between 5 minutes and 5 hours in order to form a solid mixture, the weight ratio of said metal salt to said porous oxide support being between 0.1 and 1; heating the solid mixture with stirring at a temperature between the melting point of said metal salt and 200° C. and for 5 minutes to 12 hours; calcining the solid obtained in the preceding step at a temperature above 200° C. and below or equal to 1100° C. under an inert atmosphere or under an oxygen-containing atmosphere.
Abstract:
The invention relates to a catalyst containing an active cobalt phase, deposited on a support comprising alumina, silica or silica-alumina, said support also containing a mixed oxide phase containing cobalt and/or nickel, said catalyst having been prepared by introducing at least one hydrocarbon organic compound of formula CxHy. The invention also relates to the use thereof in the field of Fischer-Tropsch synthesis processes.
Abstract:
The present invention describes a Fischer-Tropsch process for synthesis of hydrocarbons comprising contacting a charge comprising synthesis gas under Fischer-Tropsch synthesis operating conditions with at least one catalyst containing an active phase comprising at least one metal of group VIIIB selected from cobalt, nickel, ruthenium and iron deposited on an oxides support comprising alumina, silica and phosphorus, said oxides support not containing any spinel phase. The catalyst has an improved hydrothermal and mechanical resistance in a Fischer-Tropsch process while improving its catalytic performances.