Abstract:
Method for treating a partially desulphurised sulphur-containing hydrocarbon feedstock from a preliminary hydrodesulphurisation step in the presence of a catalyst comprising an active phase comprising a group VII metal and a mesoporous and macroporous alumina support comprising a bimodal distribution of mesopores, wherein: -the volume of mesopores having a diameter greater than or equal to 2 nm and less than 18 nm is between 10 and 30% by volume of the total pore volume of the support; -the volume of mesopores having a diameter greater than or equal to 18 nm and less than 50 nm is between 30 and 50% by volume of the total pore volume of the support; -the volume of macropores having a diameter greater than or equal to 50 nm and less than 8000 nm is between 30 and 50% by volume of the total pore volume of the support.
Abstract:
Disclosed is a method for the hydrodesulfurization of an olefinic gasoline cut containing sulfur, wherein said gasoline cut, hydrogen and a catalyst are brought into contact, said catalyst comprising a group VIB metal, a group VIII metal and a mesoporous and macroporous alumina substrate having a bimodal mesopore distribution and wherein: —the volume of mesopores having a diameter greater than or equal to 2 nm and less than 18 nm corresponds to between 10 and 30% by volume of the total pore volume of said substrate; —the volume of mesopores having a diameter greater than or equal to 18 nm and less than 50 nm corresponds to between 30 and 50% by volume of the total pore volume of said substrate; —the volume of macropores having a diameter greater than or equal to 50 nm and less than 8000 nm corresponds to between 30 and 50% by volume of the total pore volume of said substrate.
Abstract:
The invention relates to a porous monolith comprising between 20 wt.-% and 70 wt.-% Ti0 2 relative to the total weight of the monolith, and between 30 wt.-% and 80 wt.-% a refractory oxide, selected from silica, alumina or silica-alumina, relative to the total weight of the monolith, characterized in that said porous monolith has a bulk density of less than 0.19 g/mL.
Abstract:
Preparation of a catalyst that comprises an active phase of at least one metal of group VIM that is deposited on an oxide substrate, a) An oxide substrate that comprises alumina, silica, or a silica-alumina is provided; b) The oxide substrate of step a) is impregnated by an aqueous or organic solution that comprises at least one metal salt of group VIM that is selected from among cobalt, nickel, ruthenium, and iron, and then the product that is obtained is dried at a temperature of between 60 and 200° C.; A treatment under water vapor of the solid that is obtained in step b) is carried out at a temperature of between 110 and 195° C. for a length of time of between 30 minutes and 4 hours, in the presence of an air/vapor mixture that comprises between 2 and 50% by volume of water in vapor form.
Abstract:
The invention relates to a method for selective hydrogenation of a hydrocarbon feedstock that contains at least 2 carbon atoms per molecule and that has a final boiling point that is less than or equal to 250° C. and that comprises at least one polyunsaturated compound, in which in the presence of hydrogen, said feedstock is brought into contact with at least one catalyst that comprises a substrate and an active metal phase deposited on said substrate; said active metal phase comprises copper and at least one metal that is selected from between nickel and cobalt in a molar ratio of Cu:(Ni and/or Co) of greater than 1.
Abstract:
The present invention relates to a process for trapping mercaptans contained in a sulfur-containing hydrocarbon feedstock which is optionally partially desulfurized, resulting from a step of catalytic hydrodesulfurization, at a temperature of between 40° C. and 250° C., a pressure of between 0.2 MPa and 5 MPa, at an hourly space velocity, defined as the volume flow rate of feedstock at the inlet per volume of trapping mass, of between 0.1 h−1 and 50 h−1, in the presence of a trapping mass comprising an active phase based on at least one group VIII, IB or IIB metal, and a porous oxide or oxide mixture, the active metal of which has been activated beforehand by reduction and then passivated for the loading thereof by carbon dioxide treatment.
Abstract:
A selective hydrogenation catalyst comprising an active phase based on nickel and molybdenum, and a porous support consisting of alumina and/or nickel aluminate, characterized in that the molar ratio between the nickel and the molybdenum is greater than 2.5 mol/mol and less than 3.0 mol/mol.
Abstract:
The present invention relates to a crystallised solid, called IZM-5, comprising a chemical composition expressed on an anhydrous base, in terms of mole, and defined by the following general formula: SnaZnbS8: cR, wherein R represents at least one nitrogenous organic species; S sulphur, “a” is the molar amount of tin, denoted Sn, between 0.1 and 5; “b” is the molar amount of zinc, denoted Zn, between 0.2 and 8; “c” is the molar amount of the nitrogenous organic species R between 0 and 4.
Abstract:
A process for the synthesis of linear paraffinic hydrocarbons from a feed comprising carbon monoxide and dihydrogen in the presence of a mesoporous oxide matrix and cobalt prepared by mixing, at least one molecular precursor of cobalt and at least one colloidal precursor of mesoporous oxide matrix and by silicon, aluminium, titanium, zirconium, cerium or mixtures thereof, dissolved in aqueous or hydro-organic solvent; spray drying the mixture obtained to form spherical liquid droplets; drying the droplets to obtain solid particles activating the solid particles by reduction to form nanoparticles of cobalt with an oxidation state of 0.
Abstract:
A process for treating a gasoline containing sulfur compounds, olefins and diolefins comprises step a) bringing into contact the gasoline, hydrogen and a hydrodesulfurization catalyst, in at least one reactor. In step b) effluent from a), hydrogen, and a hydrodesulfurization catalyst are brought into contact in at least one reactor. In step c) effluent from b) is sent to a separation drum operating at a pressure of between 1.0 and 2.0 MPa to obtain a gaseous fraction containing H2S and hydrogen and a liquid fraction containing desulfurized gasoline and a fraction of dissolved H2S. In step d), the liquid fraction is sent to a stabilization column to obtain at the top a stream comprising residual H2S and C4- hydrocarbon compounds and at the bottom a stabilized gasoline. In step e), the gaseous fraction is recycled at least in part to at least one of steps a) and/or b).