Abstract:
The disclosed technology relates to a semiconductor device comprising a diode junction between two semiconductor regions of different doping types. In one aspect, the diode comprises a junction formed between an upper portion of an active area and a remainder of the active area, where the active area is defined in a substrate between two field dielectric regions. The upper portion is a portion of the active area that has a width smaller than a width of the active area itself. In another aspect, the semiconductor device is an electrostatic discharge protection device (ESD) comprising such a diode. In addition, the active area has a doping profile that exhibits a maximum value at the surface of the active area, and changes to a minimum value at a first depth, where the first depth can be greater in value than half of a depth of the upper portion. In another aspect, a method of fabrication the device does not require a separate ESD implant for lowering the holding voltage and can allow for a reduction in the number of processing steps as well as other devices comprising a diode junction.
Abstract:
The disclosed technology relates to a semiconductor device comprising a diode junction between two semiconductor regions of different doping types. In one aspect, the diode comprises a junction formed between an upper portion of an active area and a remainder of the active area, where the active area is defined in a substrate between two field dielectric regions. The upper portion is a portion of the active area that has a width smaller than a width of the active area itself. In another aspect, the semiconductor device is an electrostatic discharge protection device (ESD) comprising such a diode. In addition, the active area has a doping profile that exhibits a maximum value at the surface of the active area, and changes to a minimum value at a first depth, where the first depth can be greater in value than half of a depth of the upper portion. In another aspect, a method of fabrication the device does not require a separate ESD implant for lowering the holding voltage and can allow for a reduction in the number of processing steps as well as other devices comprising a diode junction.
Abstract:
A semiconductor device and a method for forming such are provided, the device including: a substrate, a plurality of parallel active semiconductor patterns that extend through a drain-side region and a source-side region, a metal drain contact in the drain-side region, an active gate pattern, a first dummy gate pattern, and a second dummy gate pattern that all extend across the active semiconductor patterns, and a metal interconnect structure located in a region between the first and the second dummy gate patterns. The active semiconductor patterns are doped with a dopant in portions exposed by the dummy gates in dummy gate regions that include the gate cut regions of the first and second dummy gate patterns. The metal interconnect structure connects each of a second subset of the active semiconductor patterns to a respective at least one of a first subset of the active semiconductor patterns.
Abstract:
An electrostatic discharge (ESD) protection device implemented in finFET technology is disclosed. The device has a reduced thickness shallow trench isolation (STI) layer which allows migration of high-doped drain implants therethrough to form regions extending under the STI layer thereby creating a planar-like region under the STI layer. Further, the regions are formed in an n-well layer provided between a substrate and the STI layer. The formation of the planar-like region under the STI layer has the advantage that part of the thermal energy produced in the device during an ESD event is generated under the STI layer where it can be more efficiently dissipated towards a substrate.
Abstract:
A semiconductor device and a method for forming such are provided, the device including: a substrate, a plurality of parallel active semiconductor patterns that extend through a drain-side region and a source-side region, a metal drain contact in the drain-side region, an active gate pattern, a first dummy gate pattern, and a second dummy gate pattern that all extend across the active semiconductor patterns, and a metal interconnect structure located in a region between the first and the second dummy gate patterns. The active semiconductor patterns are doped with a dopant in portions exposed by the dummy gates in dummy gate regions that include the gate cut regions of the first and second dummy gate patterns. The metal interconnect structure connects each of a second subset of the active semiconductor patterns to a respective at least one of a first subset of the active semiconductor patterns.
Abstract:
The present invention relates generally to testing of interconnects in a semiconductor die, and more particularly to testing of semiconductor chips that are three-dimensionally stacked via an interposer. In one aspect, a method for testing an interconnect in a semiconductor die comprises providing the semiconductor die, which includes a plurality of electrical contact elements formed at one or more surfaces of the semiconductor die, at least one interconnect-under-test disposed between a first electrical contact element and a second electrical contact element, and an electrical component electrically coupled between the interconnect-under-test and at least one third electrical contact element.
Abstract:
The disclosed technology generally relates to electrostatic discharge protection devices that protect circuits from transient electrical events and more particularly to low-voltage triggered silicon-controlled rectifier devices implemented using a bulk fin field-effect transistor technology. In one aspect, an electrostatic discharge protection device comprises a low-voltage triggered silicon-controlled rectifier having an embedded grounded-gate n-channel metal oxide semiconductor structure implemented as a bulk fin field-effect transistor having a plurality of fin structures. The fin structures direct current from an avalanche zone to a gate formed over the fin structure. The electrostatic discharge protection device has a higher trigger current and a lower leakage current than a similar device having a planar embedded grounded-gate n-channel metal oxide semiconductor structure because the current flow is restricted by the fin structures.
Abstract:
The disclosed technology generally relates to semiconductor devices, and more particularly to FinFET transistors. In one aspect, at least three fins are arranged to extend in parallel in a first direction and are laterally separated from each other in a second direction by shallow trench isolation structures having a first fin spacing, where at least a portion of each fin protrudes out from a substrate. At least a portion of each of a first fin and a second fin of the at least three fins vertically protrude to a level higher than an upper surface of the shallow trench isolation structures. A third fin is formed laterally between the first fin and the second fin in the second direction, where the third fin has a non-protruding region which extends vertically to a level below or equal to the upper surface of the shallow trench isolation structures.
Abstract:
An LDMOS device in FinFET technology is disclosed. In one aspect, the device includes a first region substantially surrounded by a second region of different polarity. The device further includes a first fin in the first region, extending into the second region, the first fin including a doped source region connected with a first local interconnect. The device further includes a second fin in the second region, including a doped drain region connected with a second local interconnect. The device further includes a third fin parallel with the first and second fins including a doped drain region connected with the second local interconnect. The device further includes a gate over the first fin at the border between the first and second regions. A first current path runs over the first and second fins. A second current path runs over and perpendicular to the first fin towards the third fin.
Abstract:
An LDMOS device in FinFET technology is disclosed. In one aspect, the device includes a first region substantially surrounded by a second region of different polarity. The device further includes a first fin in the first region, extending into the second region, the first fin including a doped source region connected with a first local interconnect. The device further includes a second fin in the second region, including a doped drain region connected with a second local interconnect. The device further includes a third fin parallel with the first and second fins including a doped drain region connected with the second local interconnect. The device further includes a gate over the first fin at the border between the first and second regions. A first current path runs over the first and second fins. A second current path runs over and perpendicular to the first fin towards the third fin.