Abstract:
Subtractive self-aligned via and plug patterning for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate. The first layer includes a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The interconnect structure further includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating. The metal lines of the first grating are spaced apart from the metal lines of the second grating.
Abstract:
A dielectric layer and a method of forming thereof. An opening defined in a dielectric layer and a wire deposited within the opening, wherein the wire includes a core material surrounded by a jacket material, wherein the jacket material exhibits a first resistivity ρ1 and the core material exhibits a second resistivity ρ2 and ρ2 is less than ρ1.
Abstract:
A dielectric layer and a method of forming thereof. An opening defined in a dielectric layer and a wire deposited within the opening, wherein the wire includes a core material surrounded by a jacket material, wherein the jacket material exhibits a first resistivity ρ1 and the core material exhibits a second resistivity ρ2 and ρ2 is less than ρ1.
Abstract:
Backside contact structures include etch selective materials to facilitate backside contact formation. An integrated circuit structure includes a frontside contact region, a device region below the frontside contact region, and a backside contact region below the device region. The device region includes a transistor. The backside contact region includes a first dielectric material under a source or drain region of the transistor, a second dielectric material laterally adjacent to the first dielectric material and under a gate structure of the transistor. A non-conductive spacer is between the first and second dielectric materials. The first and second dielectric materials are selectively etchable with respect to one another and the spacer. The backside contact region may include an interconnect feature that, for instance, passes through the first dielectric material and contacts a bottom side of the source/drain region, and/or passes through the second dielectric material and contacts the gate structure.
Abstract:
A dielectric layer and a method of forming thereof. An opening defined in a dielectric layer and a wire deposited within the opening, wherein the wire includes a core material surrounded by a jacket material, wherein the jacket material exhibits a first resistivity ρ1 and the core material exhibits a second resistivity ρ2 and ρ2 is less than ρ1.
Abstract:
A metallization layer including a fully clad interconnect and a method of forming a fully clad interconnect. An opening is formed in a dielectric layer, wherein the dielectric layer has a surface and the opening includes walls and a bottom. A diffusion barrier layer and an adhesion layer are deposited on the dielectric layer. An interconnect material is deposited on the dielectric layer and reflowed into the opening forming an interconnect. An adhesion capping layer and diffusion barrier capping layer are deposited over the interconnect. The interconnect is surrounded by the adhesion layer and the adhesion capping layer and the adhesion layer and the adhesion capping layer are surrounded by the diffusion barrier layer and the diffusion capping layer.