Latency reduction for wireless data transmission

    公开(公告)号:US10560174B2

    公开(公告)日:2020-02-11

    申请号:US15771253

    申请日:2016-06-29

    Abstract: Embodiments of latency reduction for wireless data transmission are generally described herein. A user equipment (UE) identifies a shortened transmission time interval (xTTI) length configuration for a time division duplexing (TDD) component carrier (CC), the xTTI length configuration comprising a length in time or a length in orthogonal frequency division multiplexing (OFDM) symbols. The UE identifies scheduling timing and hybrid automatic repeat request (HARQ) timing of physical downlink shared channel (PDSCH) and physical uplink shared channel (PUSCH) on the TDD CC based on the identified xTTI length configuration. The UE signals for transmission of a HARQ acknowledgement (HARQ-ACK) based on the identified xTTI length configuration.

    APPARATUS AND METHOD FOR SINGLE-TONE DEVICE DISCOVERY IN WIRELESS COMMUNICATION NETWORKS

    公开(公告)号:US20170373815A1

    公开(公告)日:2017-12-28

    申请号:US15589255

    申请日:2017-05-08

    Abstract: Embodiments of wireless communication devices and methods for device discovery is generally described herein. Some of these embodiments describe an apparatus having processing circuitry arranged to configure a single-tone discovery signal for transmission in a symbol in a transmission opportunity based on an assignment pattern. The assignment pattern may define frequency positions, for a set of transmission opportunities, at which the apparatus shall transmit discovery signals in the corresponding transmission opportunity. The apparatus may have physical layer circuitry arranged to transmit the single-tone discovery signal in the corresponding transmission opportunity. Other methods and apparatuses are also described.

    PHASE TRACKING REFERENCE SIGNAL (PT-RS) POWER BOOSTING

    公开(公告)号:US20190140729A1

    公开(公告)日:2019-05-09

    申请号:US16238232

    申请日:2019-01-02

    Abstract: User equipment (UE) can include processing circuitry configured to decode radio resource control (RRC) signaling from a base station, the RRC signaling indicating a transmission coding scheme for a physical uplink shared channel (PUSCH) transmission. PUSCH-to-phase tracking reference signal (PT-RS) energy per resource element (EPRE) ratio is determined using the RRC signaling. A PT-RS power boosting factor is determined based on the transmission coding scheme and the PUSCH-to-PT-RS EPRE ratio. The PT-RS is encoded for transmission using a plurality of PT-RS symbols, the transmission using increased transmission power corresponding to the PT-RS power boosting factor. The RRC signaling further includes a flag enabling the PT-RS transmission. The PUSCH-to-PT-RS EPRE ratio is 00 or 01, and the transmission coding scheme is a codebook-based uplink transmission or non-codebook-based uplink transmission.

    Seamless mobility for 5G and LTE systems and devices

    公开(公告)号:US10462723B2

    公开(公告)日:2019-10-29

    申请号:US15569505

    申请日:2015-09-25

    Abstract: User equipment (UE), an enhanced NodeB (eNB) and method of reducing handover latency are generally described. The UE may transmit measurement feedback to the eNB based on control signals. The UE may receive a reconfiguration message from the eNB or another eNB to the UE is attached. The reconfiguration message may contain reconfiguration information indicating whether or not a physical layer or layer 2 of the UE is to be reconfigured and/or a security key is to be updated. The reconfiguration information may be dependent on whether the handover is between eNBs controlled by a same entity and/or whether the handover comprises an intra-frequency transition. The UE or eNB may initiate handover of the UE. During handover the UE may avoid physical layer or layer 2 reconfiguration or the security key update. The security key and data for the UE may be provided directly between the eNBs.

Patent Agency Ranking