摘要:
A metal block has a joint element. The joint element is defined between a trench in an outer surface of the metal block and a hole extending from the outer surface of the metal block to the interior space. The trench is configured such that when heat is applied to the joint element the trench reduces dissipation of the heat throughout the metal block. The hole is configured to receive a metal tube.
摘要:
A structure is provided. The structure may include an environmental test chamber including a sample chamber, a first air path beginning in the sample chamber and extending through a humidity control chamber, the first air path circulates air between the test chamber and the humidity control chamber, and a second air path beginning in the sample chamber and extending through a pollutant control chamber, the second air path circulates air between the test chamber and the pollutant control chamber.
摘要:
Formed hose configurations are provided which include an innermost elastomer layer, a first fiber-reinforcement region, and multiple second fiber-reinforcement regions. The first fiber-reinforcement region has a first fiber-reinforcement density, and is disposed, at least in part, at a bend region of the formed hose, and the multiple second fiber-reinforcement regions have a second fiber-reinforcement density, and are disposed at least at the first and second end regions of the formed hose. The second fiber-reinforcement density is greater than the first fiber-reinforcement density, and results in the first and second ends of the formed hose being less radially-deformable than the bend region of the hose. This facilitates providing a mechanical fluid-tight connection with a hose barb fitting when the formed hose is slid over the hose barb fitting, absent any clamp over the formed hose and hose barb fitting connection.
摘要:
A structure is provided. The structure may include an environmental test chamber including a sample chamber, a first air path beginning in the sample chamber and extending through a humidity control chamber, the first air path circulates air between the test chamber and the humidity control chamber, and a second air path beginning in the sample chamber and extending through a pollutant control chamber, the second air path circulates air between the test chamber and the pollutant control chamber.
摘要:
A structure is provided. The structure may include an environmental test chamber including a sample chamber, a first air path beginning in the sample chamber and extending through a humidity control chamber, the first air path circulates air between the test chamber and the humidity control chamber, and a second air path beginning in the sample chamber and extending through a pollutant control chamber, the second air path circulates air between the test chamber and the pollutant control chamber.
摘要:
A method includes measuring a leakage current through a particulate matter sample in a humidity chamber, the leakage current is measured as a relative humidity in the humidity chamber is incrementally increased, and plotting a logarithm of the measured leakage current as a function of the relative humidity. The plot of the logarithm of the measured leakage current as a function of the relative humidity has an inversion region, a low relative humidity region, and a high relative humidity region.
摘要:
An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.
摘要:
A corrosion sensor includes a plurality of metal strips having different thicknesses. A first metal strip with the least thickness is first employed to provide sensitive corrosion detection. After an exposed portion of the first metal strip is consumed, a second metal strip having a second least thickness can be employed to provide continued sensitive corrosion detection employing a remaining un-corroded portion of the second metal strip. The plurality of metal strips can be sequentially employed as exposed portions of thinner metal strips become unusable through complete corrosion and un-corroded exposed portions of thicker metal strips become thin enough to provide sensitive corrosion detection.
摘要:
Cooling apparatuses, cooled electronic modules and methods of fabrication are provided for fluid immersion-cooling of an electronic component(s). The method includes, for instance: securing a housing about an electronic component to be cooled, the housing at least partially surrounding and forming a compartment about the electronic component to be cooled; disposing a fluid within the compartment, wherein the electronic component to be cooled is at least partially immersed within the fluid, and wherein the fluid comprises water; and providing a deionizing structure within the compartment, the deionizing structure comprising deionizing material, the deionizing material ensuring deionization of the fluid within the compartment, wherein the deionizing structure is configured to accommodate boiling of the fluid within the compartment.
摘要:
An air-to-coolant heat exchanger for an electronics rack is provided, which includes first and second tube segments, one or more connector segments, and a plurality of thermally conductive fins attached to the tube segments. The first tube segment includes a first inner tube positioned within a first outer tube, defining a first inner coolant-carrying channel and first outer coolant-carrying channel, and the second tube segment has a second inner tube positioned within a second outer tube, defining a second inner coolant-carrying channel and second outer coolant-carrying channel. The connector segment(s) couples in fluid communication at least one of the first and second inner coolant-carrying channels, or the first and second outer coolant-carrying channels. The heat exchanger is coupled to separately receive a first coolant and a second coolant, with the first coolant passing through the inner channels, and the second coolant through the outer channels.