Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
Disclosed are embodiments of a bipolar or heterojunction bipolar transistor and a method of forming the transistor. The transistor can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method allows for self-aligning of the emitter to base regions and incorporates the use of a sacrificial dielectric layer, which must be thick enough to withstand etch and cleaning processes and still remain intact to function as an etch stop layer when the conductive strap is subsequently formed. A chemically enhanced high pressure, low temperature oxidation (HIPOX) process can be used to form such a sacrificial dielectric layer.
Abstract:
Disclosed are embodiments of a bipolar or heterojunction bipolar transistor and a method of forming the transistor. The transistor can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method allows for self-aligning of the emitter to base regions and incorporates the use of a sacrificial dielectric layer, which must be thick enough to withstand etch and cleaning processes and still remain intact to function as an etch stop layer when the conductive strap is subsequently formed. A chemically enhanced high pressure, low temperature oxidation (HIPOX) process can be used to form such a sacrificial dielectric layer.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A structure that provides a diffusion barrier between two doped regions. The structure includes a diffusion barrier including a semiconductor layer comprising a first doped region and a second doped region; and a diffusion barrier separating the first doped region and the second doped region, wherein the diffusion barrier comprises a doped portion and a notch above the doped portion.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity includes forming a first sacrificial cavity layer over a wiring layer and substrate. The method further includes forming an insulator layer over the first sacrificial cavity layer. The method further includes performing a reverse damascene etchback process on the insulator layer. The method further includes planarizing the insulator layer and the first sacrificial cavity layer. The method further includes venting or stripping of the first sacrificial cavity layer to a planar surface for a first cavity of the MEMS.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.