摘要:
Provided is a method of manufacturing a nano size-gap electrode device. The method includes the steps of: disposing a floated nano structure on a semiconductor layer; forming a mask layer having at least one opening pattern to intersect the nano structure; and depositing a metal on the semiconductor layer exposed through the opening pattern to form an electrode, such that a nano size-gap is provided under the nano structure by the nano structure.
摘要:
Provided is a method of manufacturing a nano size-gap electrode device. The method includes the steps of: disposing a floated nano structure on a semiconductor layer; forming a mask layer having at least one opening pattern to intersect the nano structure; and depositing a metal on the semiconductor layer exposed through the opening pattern to form an electrode, such that a nano size-gap is provided under the nano structure by the nano structure.
摘要:
Provided is a method of manufacturing a semiconductor device in which properties of photoresist through a lithography process are changed to form a dummy structure, and the structure is applied to a process of forming a gate electrode. The method includes the steps of: forming a buffer layer on the top of a semiconductor substrate; applying an inorganic photoresist on the buffer layer, and forming a photoresist pattern using a lithography process; thermally treating the photoresist pattern using a predetermined gas; uniformly depositing an insulating layer on the thermally treated structure, and etching the deposited layer by the deposited thickness in order to expose the thermally treated photoresist pattern; depositing an insulating layer on the etched structure, and etching the deposited insulating layer to expose the thermally treated photoresist pattern; removing the exposed photoresist pattern using an etching process; forming a gate oxide layer in the portion in which the photoresist pattern is removed; and forming a gate electrode on the gate oxide layer. Accordingly, in forming a structure for manufacturing a nano-sized device, the properties of the layer formed by a lithography process are improved through thermal treatment, and thus the structure used to manufacture various devices can be easily formed.
摘要:
Provided is a method of manufacturing a semiconductor device in which properties of photoresist through a lithography process are changed to form a dummy structure, and the structure is applied to a process of forming a gate electrode. The method includes the steps of: forming a buffer layer on the top of a semiconductor substrate; applying an inorganic photoresist on the buffer layer, and forming a photoresist pattern using a lithography process; thermally treating the photoresist pattern using a predetermined gas; uniformly depositing an insulating layer on the thermally treated structure, and etching the deposited layer by the deposited thickness in order to expose the thermally treated photoresist pattern; depositing an insulating layer on the etched structure, and etching the deposited insulating layer to expose the thermally treated photoresist pattern; removing the exposed photoresist pattern using an etching process; forming a gate oxide layer in the portion in which the photoresist pattern is removed; and forming a gate electrode on the gate oxide layer. Accordingly, in forming a structure for manufacturing a nano-sized device, the properties of the layer formed by a lithography process are improved through thermal treatment, and thus the structure used to manufacture various devices can be easily formed.
摘要:
Provided is a MOSFET with an ultra short channel length and a method of fabricating the same. The ultra short channel MOSFET has a silicon wire channel region with a three-dimensional structure, and a source/drain junction formed in a silicon conductive layer formed of both sides of the silicon wire channel region. Also, a gate electrode formed on the upper surface of the silicon wire channel region by interposing a gate insulating layer having a high dielectric constant therebetween, and source and drain electrodes connected to the source/drain junction are included. The silicon wire channel region is formed with a triangular or trapezoidal section by taking advantage of different etch rates that depend on the planar orientation of the silicon. The source/drain junction is formed by a solid-state diffusion method.
摘要:
Provided are an SOI MOSFET device with a nanoscale channel that has a source/drain region including a shallow extension region and a deep junction region formed by solid-phase diffusion and a method of manufacturing the SOI MOSFET device. In the method of manufacturing the MOSFET device, the shallow extension region and the deep junction region that form the source/drain region are formed at the same time using first and second silicon oxide films doped with different impurities. The effective channel length of the device can be scaled down by adjusting the thickness and etching rate of the second silicon oxide film doped with the second impurity. The source/drain region is formed on the substrate before the formation of a gate electrode, thereby easily controlling impurity distribution in the channel. An impurity activation process of the source/drain region can be omitted, thereby preventing a change in a threshold voltage of the device. A solid-phase impurity is diffused. Therefore, no crystal defect of a substrate is caused, thereby decreasing a junction leakage current.
摘要:
A method is provided for achieving SRAM output characteristics from DRAMs, in which a plurality of DRAMs are arranged connected in parallel to a controller in such a way as to be able to obtain SRAM output characteristics using the DRAMs, comprising a process in which data is output to an external device when a control signal for data reading has been input from the external device, by sequentially repeating a step in which the controller sends a data output state control signal to one DRAM and sends a refresh standby state control signal to the other DRAMs, the data is read and sent to the external device from the DRAM in the output state, and a refresh standby state control signal is sent to the DRAM which was in the output state while an output state control signal is sent to another DRAM and data is read out from the DRAM in the output state, and a step in which the controller sends a control signal for changing the output state to the refresh standby state.
摘要:
Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
摘要:
The present invention relates to a Radio Frequency Repeater to prevent oscillation with canceling a feedback interference signal between transmitting and receiving antenna with built-in transmitting and receiving antenna in wireless mobile communication repeater.A radio frequency repeater for canceling a feedback interference signal has a downlink path from a base station to a terminal and an uplink path from a terminal to a base station, and said downlink path and said uplink path is separated and combination by a duplexer.
摘要:
A method for assigning a channel in multi-FA CDMA mobile communication system according to the received power prevents communication quality of a FA from being inferior to that of the others by managing the interference level of the FA. The method comprises the steps of: comparing a first threshold value with received power when the base station receives a new call request; assigning a traffic channel in a first FA of the request, if the received power is less than the first threshold value, and searching a second FA of which received power is least, if not; comparing a second threshold value with the received power of the second FA; and assigning a traffic channel in the second FA if the received power is less than the second threshold value, and rejecting the request, if not.