摘要:
Technologies for managing data object requests in a storage node cluster include a proxy computing node communicatively coupled to the cluster of storage nodes. The proxy computing node is configured to receive data object requests from a communicatively coupled client computing device and identify a plurality of storage nodes of the cluster at which the data object of the data object request is stored. The proxy computing node is further configured to determine which of the identified storage nodes from which to retrieve the stored data object and transmit a request for the data object. Additionally, the proxy computing node is configured to estimate a request completion time based on a service time and a wait time for each of the identified storage nodes, as well as identify which of the storage nodes to retrieve the stored data object from based on the estimated request completion times. Other embodiments are described and claimed.
摘要:
A heterogeneous processor architecture and a method of booting a heterogeneous processor is described. A processor according to one embodiment comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; and a package unit, to enable a bootstrap processor. The bootstrap processor initializes the homogeneous physical processor cores, while the heterogeneous processor presents the appearance of a homogeneous processor to a system firmware interface.
摘要:
A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of large physical processor cores to software through a corresponding set of virtual cores and to hide the set of small physical processor core from the software.
摘要:
A processor includes multiple physical cores that support multiple logical cores of different core types, where the core types include a big core type and a small core type. A multi-threaded application includes multiple software threads are concurrently executed by a first subset of logical cores in a first time slot. Based on data gathered from monitoring the execution in the first time slot, the processor selects a second subset of logical cores for concurrent execution of the software threads in a second time slot. Each logical core in the second subset has one of the core types that matches the characteristics of one of the software threads.
摘要:
A heterogeneous processor architecture and a method of booting a heterogeneous processor is described. A processor according to one embodiment comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; and a package unit, to enable a bootstrap processor. The bootstrap processor initializes the homogeneous physical processor cores, while the heterogeneous processor presents the appearance of a homogeneous processor to a system firmware interface.
摘要:
A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of two or more small physical processor cores; at least one large physical processor core having relatively higher performance processing capabilities and relatively higher power usage relative to the small physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of two or more small physical processor cores to software through a corresponding set of virtual cores and to hide the at least one large physical processor core from the software.
摘要:
A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a first set of one or more physical processor cores having first processing characteristics; a second set of one or more physical processor cores having second processing characteristics different from the first processing characteristics; virtual-to-physical (V-P) mapping logic to expose a plurality of virtual processors to software, the plurality of virtual processors to appear to the software as a plurality of homogeneous processor cores, the software to allocate threads to the virtual processors as if the virtual processors were homogeneous processor cores; wherein the V-P mapping logic is to map each virtual processor to a physical processor within the first set of physical processor cores or the second set of physical processor cores such that a thread allocated to a first virtual processor by software is executed by a physical processor mapped to the first virtual processor from the first set or the second set of physical processors.
摘要:
An intelligent power allocation architecture for a processor. For example, one embodiment of a processor comprises: a plurality of processor components for performing a corresponding plurality of processor functions; a plurality of power planes, each power plane associated with one of the processor components; and a power control unit (PCU) to dynamically adjust power to each of the power planes based on user experience metrics, workload characteristics, and power constraints for a current use of the processor.