Abstract:
Systems, circuitries, and methods are described for phase-continuous shifting of a reference clock frequency from fREF to NREF for a DPLL that includes a DCO and a feedback loop that generates a feedback signal. The DPLL generates a local oscillator signal based on an analog reference signal having a reference clock frequency fREF and a digital reference signal having the reference clock frequency fREF. In one example, the method includes receiving a target time and at expiration of a first nonzero interval after the target time, generating a subsequent feedback signal having the target reference clock frequency NfREF; at expiration of a second nonzero interval after the target time, generating a subsequent analog reference signal having the target reference clock frequency NfREF; and at expiration of a third nonzero interval after the target time, generating a subsequent digital reference clock signal having the target reference clock frequency NfREF.
Abstract:
A digital to time converter is disclosed and includes a code logic and an interpolator. The code logic is configured to receive a first phase signal and a second phase signal and generate a select signal according to the first phase signal and the second phase signal. The interpolator has a bank of inverters. The interpolator is configured to generate an interpolator signal based on the select signal and an input signal.
Abstract:
Predictive time-to-digital converters (TDCs) and methods for providing a digital representation of a time interval are disclosed herein. In an example, a TDC can include a delay line, a selection circuit, and a latch circuit. The delay line can include a plurality of delay elements configured to propagate a first edge of a first signal sequentially through the plurality of delay elements. The selection circuit can be configured to receive the first signal, to receive prediction information, and to route the first signal to an input of one of the plurality of delay elements based on the prediction information. The latch circuit can receive a second signal and can latch a plurality of outputs of the delay line upon reception of a second edge of the second signal. An output of the latch circuit can provide an indication of a delay between the first edge and the second edge.
Abstract:
Systems, circuitries, and methods are described for phase-continuous shifting of a reference clock frequency from fREF to NREF for a DPLL that includes a DCO and a feedback loop that generates a feedback signal. The DPLL generates a local oscillator signal based on an analog reference signal having a reference clock frequency fREF and a digital reference signal having the reference clock frequency fREF. In one example, the method includes receiving a target time and at expiration of a first nonzero interval after the target time, generating a subsequent feedback signal having the target reference clock frequency NfREF; at expiration of a second nonzero interval after the target time, generating a subsequent analog reference signal having the target reference clock frequency NfREF; and at expiration of a third nonzero interval after the target time, generating a subsequent digital reference clock signal having the target reference clock frequency NfREF.
Abstract:
A user equipment (UE) to compensating for the frequency disturbance. The apparatus may include baseband circuitry and radio frequency (RF) circuitry. The baseband circuitry may detect a request for connectivity circuitry to perform an operation that generates a signal creating a frequency disturbance at the RF circuitry and send operation information indicating a type of the operation to radio frequency (RF) circuitry. The RF circuitry may include a processor and a phase lock loop (PLL) subsystem. The processor may receive the operation information; determine timing information correlating to the operation information; and send the timing information to a phase lock loop (PLL) subsystem indicating the type of the operation and a time of the operation. The PLL subsystem may generate an inverse signal to compensate for the frequency disturbance.
Abstract:
Predictive time-to-digital converters (TDCs) and methods for providing a digital representation of a time interval are disclosed herein. In an example, a TDC can include a delay line, a selection circuit, and a latch circuit. The delay line can include a plurality of delay elements configured to propagate a first edge of a first signal sequentially through the plurality of delay elements. The selection circuit can be configured to receive the first signal, to receive prediction information, and to route the first signal to an input of one of the plurality of delay elements based on the prediction information. The latch circuit can receive a second signal and can latch a plurality of outputs of the delay line upon reception of a second edge of the second signal. An output of the latch circuit can provide an indication of a delay between the first edge and the second edge.
Abstract:
A digital to time converter is disclosed and includes a code logic and an interpolator. The code logic is configured to receive a first phase signal and a second phase signal and generate a select signal according to the first phase signal and the second phase signal. The interpolator has a bank of inverters. The interpolator is configured to generate an interpolator signal based on the select signal and an input signal.