Abstract:
A Raman scattered light enhancement device including a waveguide provided in a photonic crystal (20) made of a semiconductor substrate in which holes (20a) are formed. The waveguide has resonant modes with respect to incident light at a plurality of frequencies. A difference in frequency between one resonant mode and another resonant mode is equal to a Raman shift frequency of the semiconductor substrate. A waveguide forming direction with respect to a crystal plane orientation of the semiconductor substrate is set so as to maximize a Raman transition probability which is represented by electromagnetic field distribution of the two resonant modes and a Raman tensor of the semiconductor substrate.
Abstract:
A two-dimensional photonic crystal surface emitting laser has a laminated structure including: a two-dimensional photonic crystal (2DPC) layer in which refractive index distribution is formed by two-dimensionally arranging air holes in a plate-shaped base member; and an active layer for generating light with wavelength λL by receiving an injection of electric current. The two-dimensional photonic crystal surface emitting laser emits a laser beam in the direction of an inclination angle θ from normal to the 2DPC layer.
Abstract:
A thermal emission source capable of switching the intensity of light at a high response speed similarly to a photoelectric conversion element. A thermal emission source includes: a two-dimensional photonic crystal including a slab in which an n-layer made of an n-type semiconductor, a quantum well structure layer having a quantum well structure, and a p-layer made of a p-type semiconductor are stacked in the mentioned order in the thickness direction, wherein modified refractive index areas (air holes) whose refractive index differs from the refractive indices of the n-layer, the p-layer and the quantum well structure layer are cyclically arranged in the slab so as to resonate with a specific wavelength of light corresponding to a transition energy between the subbands in a quantum well in the quantum well structure layer; and a p-type electrode and an n-type electrode for applying, to the slab, a voltage which is negative on the side of the p-layer and positive on the side of the n-layer.
Abstract:
A two-dimensional photonic crystal surface emitting laser has a laminated structure including: a two-dimensional photonic crystal (2DPC) layer in which refractive index distribution is formed by two-dimensionally arranging air holes in a plate-shaped base member; and an active layer for generating light with wavelength λL by receiving an injection of electric current. The two-dimensional photonic crystal surface emitting laser emits a laser beam in the direction of an inclination angle θ from normal to the 2DPC layer.
Abstract:
A two-dimensional photonic crystal surface emitting laser has a laminated structure including: a two-dimensional photonic crystal (2DPC) layer in which refractive index distribution is formed by two-dimensionally arranging air holes in a plate-shaped base member; and an active layer for generating light with wavelength λL by receiving an injection of electric current. The two-dimensional photonic crystal surface emitting laser emits a laser beam in the direction of an inclination angle θ from normal to the 2DPC layer.
Abstract:
A Raman scattered light enhancement device including a waveguide provided in a photonic crystal (20) made of a semiconductor substrate in which holes (20a) are formed. The waveguide has resonant modes with respect to incident light at a plurality of frequencies. A difference in frequency between one resonant mode and another resonant mode is equal to a Raman shift frequency of the semiconductor substrate. A waveguide forming direction with respect to a crystal plane orientation of the semiconductor substrate is set so as to maximize a Raman transition probability which is represented by electromagnetic field distribution of the two resonant modes and a Raman tensor of the semiconductor substrate.