摘要:
A user activity real-time recognition apparatus and method are provided and include a collector configured to collect a frequency-domain signal for each user activity and to generate learning data based on the frequency-domain signal. The apparatus and method also include an extractor configured to extract a user activity feature from the frequency-domain signal based on an activity feature extracting model. The activity feature extracting model is learned based on the learning data from the collector. The apparatus and method further include a classifier configured to analyze the user activity feature to classify a user activity pattern based on an activity pattern classifying model and configured to transmit the classified user activity pattern to an application device.
摘要:
The present invention discloses a method for manufacturing thin film structure, which comprises the following steps: providing a substrate having a first recess and a second recess formed therein with the first recess being deeper than the second recess; depositing a first material layer and a second material layer of different thicknesses successively on the substrate; and grinding the substrate so that a flat upper surface is formed and the first material layer and the second material layer are remained in the first recess while only the first material layer is remained in the second recess. The present invention also discloses a method for manufacturing fringe field switching type liquid crystal display array substrate. With the present invention, it is possible to make the upper surface flat while forming patterns on two layers of thin films respectively by using a single mask.
摘要:
A method for fabricating a thin film pattern and a method for fabricating an array substrate are provided. The method for fabricating a thin film pattern comprises: forming a first film and a second film sequentially; applying a layer of photoresist on the second film; forming a photoresist pattern comprising a totally left region, a partially left region and a totally removed region; performing a first wet etching on the second film in the totally removed region; performing a first dry etching on the first film in the totally removed region to form a first pattern, and etching the photoresist layer to remove the photoresist in the partially left region to expose the second film in the partially left region; performing a second wet etching on the second film in the partially left region; performing a second dry etching to form a second pattern; and removing the residual photoresist.
摘要:
An embodiment of the disclosed technology provides a method of manufacturing an array substrate, comprising: a first mask process of forming an inorganic material protrusion on a base substrate; a second mask process of forming a reflective region pattern, a gate line, a gate electrode branched from the gate line, and a common electrode; a third mask process of forming an active island and a data line formed and forming a source electrode connected to the data line and a drain electrode on the active island and a channel; a fourth mask process of forming an insulation material layer, treating the insulation material layer to form a planarization layer, and forming a through hole above the drain electrode; and a fifth mask process of forming a pixel electrode and connected to the drain electrode via the through hole in a reflective region.
摘要:
Provided is an apparatus of separating a musical sound source, which may re-construct mixed signals into target sound sources and other sound sources directly using sound source information performed using a predetermined musical instrument when the sound source information is present, thereby more effectively separating sound sources included in the mixed signal. The apparatus may include a Nonnegative Matrix Partial Co-Factorization (NMPCF) analysis unit to perform an NMPCF analysis on a mixed signal and a predetermined sound source signal using a sound source separation model, and to obtain a plurality of entity matrices based on the analysis result, and a target instrument signal separating unit to separate, from the mixed signal, a target instrument signal corresponding to the predetermined sound source signal by calculating an inner product between the plurality of entity matrices.
摘要:
An embodiment of the disclosed technology provides a pixel structure, comprising a TFT, a reflective region and a transmissive region, wherein the reflective region comprises a reflective region insulation layer, a reflection layer on the reflective region insulation layer and a reflective region pixel electrode on the reflection layer, and the transmissive region comprises a transmissive region pixel electrode, wherein the reflective region pixel electrode and the transmissive region pixel electrode form an integral structure, and the integral structure of the pixel electrodes is connected with the drain electrode of the TFT, wherein the organic layer in the reflective region is formed on an array substrate prior to a gate electrode of the TFT, and the reflection layer in the reflective region and the gate electrode of the TFT are formed in a same patterning process by using a same metal layer.
摘要:
An embodiment of the disclosed technology discloses an array substrate comprising: a base substrate; a first layer transparent common electrode formed on the base substrate; a gate metal common electrode formed on the first layer transparent common electrode; an insulation layer formed on the gate metal common electrode, with via holes being formed in the insulation layer; and a second layer transparent common electrode formed on the insulation layer. A side portion of via holes is in contact with the gate metal common electrode, another side portion is in contact with the first layer transparent common electrode, such that the second layer transparent common electrode is connected electrically with the first layer transparent common electrode and the gate metal common electrode in the via holes.
摘要:
A manufacturing method for an FFS type TFT-LCD array substrate comprises: depositing a first metal film on a transparent substrate, and form a gate line, a gate electrode and a common electrode line by a first patterning process; depositing a gate insulating layer, an active layer film and a second metal film sequentially and patterning the second metal film and the active layer film by a second patterning process; Step 3 depositing a first transparent conductive film and patterning the first transparent conductive film, the second metal film and the active layer film by a third patterning process; depositing a passivation layer, forming a connection hole by patterning the passivation layer through the fourth patterning process, performing an ashing process on photoresist used in the fourth patterning process, depositing a second transparent conductive layer on the remaining photoresist, and forming a common electrode by a lifting-off process.
摘要:
An embodiment of the disclosed technology provides a mask plate for photolithography process comprising a first pattern region, a second pattern region having a different exposure level from that of the first pattern region, and a redundant pattern provided between the first pattern region and the second pattern region, wherein the redundant pattern is configured for forming a redundant photoresist pattern so as to prevent developer diffusion at different concentrations across the photoresist redundant pattern.
摘要:
An embodiment of the invention provides a method for manufacturing an array substrate, wherein the procedure for forming a data line, an active layer with a channel, a source electrode, a drain electrode and a pixel electrode comprises applying a photoresist on a data line metal thin film and performing exposure and development processes by using a multi-tone mask so as to form a photoresist pattern including a third thickness region, a second thickness region and a first thickness region whose thicknesses are successively increased, the third thickness region at least corresponding to the pixel electrode, the second thickness region corresponding to the data line, the active layer, the source electrode and the drain electrode, and the first thickness region corresponding to the other regions.