摘要:
Embodiments of the invention are generally directed to systems, apparatuses, and methods for mitigating silent data corruption in a fully-buffered memory module architecture. In an embodiment, a memory controller includes a memory channel bit-lane error detector having an M-bit CRC and N-bit CRC, wherein N is less than M. The N-bit CRC is used if at least one bit-lane of the memory channel fails. In one embodiment, the memory controller selectively applies the strong error detection capability of an error correction code (ECC) in combination with the N-bit CRC to signal the need to resend faulty data, if at least one bit-channel has failed. Other embodiments are described and claimed.
摘要:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for mitigating silent data corruption using an error correction code having embedded signaling fault detection. In an embodiment, a memory controller includes an extended error correction code (ECC) and link signaling fault detection logic. The extended ECC includes embedded signaling fault detection. In one embodiment, the extended ECC augments the signaling fault detection capabilities of the signaling fault detection logic.
摘要:
Embodiments of the invention are generally directed to systems, apparatuses, and methods for mitigating silent data corruption in a fully-buffered memory module architecture. In an embodiment, a memory controller includes a memory channel bit-lane error detector having an M-bit CRC and N-bit CRC, wherein N is less than M. The N-bit CRC is used if at least one bit-lane of the memory channel fails. In one embodiment, the memory controller selectively applies the strong error detection capability of an error correction code (ECC) in combination with the N-bit CRC to signal the need to resend faulty data, if at least one bit-channel has failed. Other embodiments are described and claimed.
摘要:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for mitigating silent data corruption using an error correction code having embedded signaling fault detection. In an embodiment, a memory controller includes an extended error correction code (ECC) and link signaling fault detection logic. The extended ECC includes embedded signaling fault detection. In one embodiment, the extended ECC augments the signaling fault detection capabilities of the signaling fault detection logic.
摘要:
A memory controller uses a scheme to retire two entries from a replay queue due to a single non-error response. Advantageously, entries in a replay queue may be retired earlier than conventional systems, minimizing the size of the replay queue.
摘要:
A system (100) is described for characterizing and/or manipulating molecules. The system may especially be suitable for biological molecules, although the invention is not limited thereto. The system (100) comprises a substrate (110) comprising a nanostructure (120) being suitable for translocation of molecules through the nanostructure (120). It furthermore comprises a means (210) for translocating molecules through the nanostructure (120) and a plasmonic force field generating means (130) adapted for influencing the translocation speed of the particle by applying a plasmonic force field at the nanostructure (120). A corresponding method also is described.
摘要:
A multiprocessor system comprises at least one processing module, at least one I/O module, and an interconnect network to connect the at least one processing module with the at least one input/output module. In an example embodiment, the interconnect network comprises at least two bridges to send and receive transactions between the input/output modules and the processing module. The interconnect network further comprises at least two crossbar switches to route the transactions over a high bandwidth switch connection. Using embodiments of the interconnect network allows high bandwidth communication between processing modules and I/O modules. Standard processing module hardware can be used with the interconnect network without modifying the BIOS or the operating system. Furthermore, using the interconnect network of embodiments of the present invention is non-invasive to the processor motherboard. The processor memory bus, clock, and reset logic all remain intact.
摘要:
A method of manufacturing a light emitting diode is disclosed. In one aspect, the light emitting diode has a carrier, an active layer structure of III-nitride type materials, and a photonic crystal structure of III-nitride type materials. The active layer structure includes a first active layer with an n-type doped layer and a p-type doped layer and suitably a quantum well structure. The photonic crystal structure includes periodically distributed trenches or periodically distributed pillars spaced by one or more trenches. The photonic crystal structure includes an overgrowth layer within which a diameter of a trench gradually increases, and a directional photonic crystal layer in which the diameter of a trench is substantially constant. The diode may be formed in a method wherein the directional photonic crystal layer is provided on a three-dimensional pattern that exposes selected areas of the first surface of the substrate.
摘要:
A method for forming a nanostructure penetrating a layer and the device made thereof is disclosed. In one aspect, the device has a substrate, a layer present thereon, and a nanostructure penetrating the layer. The nanostructure defines a nanoscale passageway through which a molecule to be analyzed can pass through. The nanostructure has, in cross-sectional view, a substantially triangular shape. This shape is particularly achieved by growth of an epitaxial layer having crystal facets defining tilted sidewalls of the nanostructure. It is highly suitably for use for optical characterization of molecular structure, particularly with surface plasmon enhanced transmission spectroscopy.
摘要:
A method of manufacturing a light emitting diode is disclosed. In one aspect, the light emitting diode has a carrier, an active layer structure of III-nitride type materials, and a photonic crystal structure of III-nitride type materials. The active layer structure includes a first active layer with an n-type doped layer and a p-type doped layer and suitably a quantum well structure. The photonic crystal structure includes periodically distributed trenches or periodically distributed pillars spaced by one or more trenches. The photonic crystal structure includes an overgrowth layer within which a diameter of a trench gradually increases, and a directional photonic crystal layer in which the diameter of a trench is substantially constant. The diode may be formed in a method wherein the directional photonic crystal layer is provided on a three-dimensional pattern that exposes selected areas of the first surface of the substrate.