摘要:
A method for operating a field emission device (100) having an electron emitter (115) includes the steps of providing an emitter-enhancing electrode (117) proximate to electron emitter (115), causing emitter-enhancing electrode (117) to emit electrons, and causing the electrons emitted by emitter-enhancing electrode (117) to be received by electron emitter (115). A method for fabricating a field emission device (100) includes the steps of forming a layer (126) of dielectric material, forming emitter-enhancing electrode (117) on layer (126) of dielectric material, forming an enhanced-emission structure (131) in emitter-enhancing electrode (117), removing a portion of layer (126) of dielectric material proximate to enhanced-emission structure (131) to form a well (114, 158), and forming electron emitter (115) within well (114, 158).
摘要:
A field emission device (100) includes an electron emitter (115) and an emitter-enhancing electrode (117) having an enhanced-emission structure (131), which is disposed proximate to electron emitter (115). Enhanced-emission structure (131) is embodied by, for example, each of the following structures: a tapered portion (118) of emitter-enhancing electrode (117), an electron-emissive edge (135) that is generally parallel to an axis (136) of electron emitter (115), a combination of a conductive layer (137) and an electron-emissive layer (138) that is disposed proximate to an edge (133) of conductive layer (137), and an electron-emissive layer (146) having a thickness of less than about 500 angstroms.
摘要:
A vacuum microelectronic device (10,40) emits electrons (37) from surfaces of nanotube emitters (17, 18). Extracting electrons from the surface of each nanotube emitter (17) results is a small voltage variation between each emitter utilized in the device (10, 40). Consequently, the vacuum microelectronic device (10,40) has a more controllable turn-on voltage and a consistent current density from each nanotube emitter (17,18).
摘要:
An electron-emissive film (170, 730) is made from graphite and has a surface defining a plurality of emissive clusters (100), which are uniformly distributed over the surface. Each of the emissive clusters (100) has dendrites (110) extending radially from a central point (120). Each of the dendrites (110) has a ridge (130), which has a radius of curvature of less than 10 nm. The graphene sheets (160) that form the dendrites (110) have a (002) lattice spacing within a range of 0.342-0.350 nanometers.
摘要:
A method for fabricating an electron-emissive film (100) includes the steps of providing a powder (124), which has a plurality of carbon nanotubes (104); providing a substrate (102), a surface (103) of which defines a plurality of interstices (107); and dry spraying powder (124) onto surface (103) of substrate (102). The adjustable parameters of the dry spraying step include a separation distance of a spray nozzle (120) from surface (103), a spray angle between a spray (121) and surface (103), and a nozzle pressure at an opening (123) of spray nozzle (120). The separation distance, spray angle, and nozzle pressure are selected to achieve, for example, uniformity of electron-emissive film (100) and adhesion of carbon nanotubes (104) to substrate (102). They can also be selected to achieve a perpendicular orientation of a length-wise axis (105) of each of carbon nanotubes (104) with respect to surface (103) and to achieve the break down of aggregates of carbon nanotubes (104), so that carbon nanotubes (104) are deposited on substrate (102) substantially as individually isolated carbon nanotubes (104).
摘要:
A field emission device (100) includes an electron emitter structure (105) having a deuteride layer (108), which defines a surface (109) of electron emitter structure (105). Deuteride layer (108) is disposed upon an electron emitter (106), which is made from a metal. Deuteride layer (108) is a deuteride of the metal from which electron emitter (106) is made. A method for conditioning field emission device (100) includes the step of providing a contaminated cathode structure (137), which has a contaminated emitter structure (138). The method further includes the step of causing deuterium to react with a metal oxide layer (140) of emitter structure (138), so that the deuterium replaces the oxygen of metal oxide layer (140).
摘要:
A method for forming an electron emissive film (200, 730, 830) includes the steps of: (i) evaporating a graphite source (120, 620) in a cathodic arc deposition apparatus (100, 600) to create a carbon plasma (170, 670), (ii) applying a potential difference between the graphite source (120, 620) and a glass or silicon deposition substrate (130, 630, 710, 810) for accelerating the carbon plasma (170, 670) toward the deposition substrate (130, 630, 710, 810), (iii) providing a working gas within the cathodic arc deposition apparatus (100, 600), and (ii) depositing the carbon plasma (170, 670) onto the deposition substrate (130, 630, 710, 810).
摘要:
A field emission display (100) includes an electron emitter structure (105) designed to emit an emission current (134), a phosphor (126) disposed to receive at an electron-receiving surface (127) emission current (134), and a multi-layered barrier structure (125) disposed on electron-receiving surface (127) of phosphor (126). Multi-layered barrier structure (125) of the preferred embodiment includes an aluminum layer (128) disposed on electron-receiving surface (127) of phosphor (126) and a carbon layer (129) disposed on aluminum layer (128).
摘要:
A method of fabricating a field emission device cathode using electrophoretic deposition of carbon nanotubes in which a separate step of depositing a binder material onto a substrate, is performed prior to carbon nanotube particle deposition. First, a binder layer is deposited on a substrate from a solution containing a binder material. The substrate having the binder material deposited thereon is then transferred into a carbon nanotube suspension bath allowing for coating of the carbon nanotube particles onto the substrate. Thermal processing of the coating transforms the binder layer properties which provides for the adhesion of the carbon nanotube particles to the binder material.
摘要:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.