摘要:
An ion accelerating device includes a series of bushing units and a series of resistor circuit units. Each resistor circuit unit is coupled to one bushing unit. A bushing unit includes three integrated conductors to establish connections to the coupled resistor circuit unit and to an immediately adjacent bushing unit such that a voltage to the bushing unit may be degraded by the resistor circuit unit before reaching the lens and that two bushing units may contact one another directly.
摘要:
An ion accelerating device includes a series of bushing units and a series of resistor circuit units. Each resistor circuit unit is coupled to one bushing unit. A bushing unit includes three integrated conductors to establish connections to the coupled resistor circuit unit and to an immediately adjacent bushing unit such that a voltage to the bushing unit may be degraded by the resistor circuit unit before reaching the lens and that two bushing units may contact one another directly.
摘要:
Disclosed is a surge protection system for use with an ion source assembly. The system comprises a high voltage power source coupled in series with a thermionic diode and an ion source assembly. The high voltage power supply is enclosed in the pressure tank and drives the ion source assembly. The thermionic diode is comprised of an insulating tube disposed between the ion source assembly enclosure and the output of the high voltage power supply and makes use of existing ion source assembly components to limit damage to the power supply during arc failures of the ion source assembly.
摘要:
Disclosed is a surge protection system for use with an ion source assembly. The system comprises a high voltage power source coupled in series with a thermionic diode and an ion source assembly. The high voltage power supply is enclosed in the pressure tank and drives the ion source assembly. The thermionic diode is comprised of an insulating tube disposed between the ion source assembly enclosure and the output of the high voltage power supply and makes use of existing ion source assembly components to limit damage to the power supply during arc failures of the ion source assembly.
摘要:
An ion implantation system and method are disclosed in which glitches in voltage are minimized by modifications to the power system of the implanter. These power supply modifications include faster response time, output filtering, improved glitch detection and removal of voltage blanking. By minimizing glitches, it is possible to produce solar cells with acceptable dose uniformity without having to pause the scan each time a voltage glitch is detected. For example, by shortening the duration of a voltage to about 20-40 milliseconds, dose uniformity within about 3% can be maintained.
摘要:
An ion implantation system and method are disclosed in which glitches in voltage are minimized by use of a modulated power supply system in the implanter. The modulated power supply system includes a traditional power supply and a control unit associated with each power supply, where the control unit is used to isolate the power supply from an electrode if a glitch or arc is detected. The control unit then restores connectivity after the glitch condition has been rectified.
摘要:
A power supply system for an ion implantation system. In one particular exemplary embodiment, the system may be realized as a power supply system that includes a low frequency power inverter, a stack driver and a high voltage power generation unit that receives source power from the power inverter. The high voltage generation unit may include a high voltage transformer for providing an output power that is multiplied to a desired output level and delivered to an input terminal of an ion beam accelerator. The power supply system may also include a dielectric enclosure that encases at least a portion of the high voltage power generation unit, thereby preventing variation in the break down strength of the internal components.