摘要:
An enzymatic electrochemical-based sensor includes a substrate and a conductive layer formed from a dried water-miscible conductive ink. The water-miscible conductive ink used to form the conductive layer includes a conductive material, an enzyme, a mediator, and a binding agent and is formulated such that the water-miscible conductive ink is a water-miscible aqueous-based dispersion and the binding agent became operatively water-insoluble upon drying.
摘要:
A water-miscible conductive ink for use in enzymatic electrochemical-based sensors includes a conductive material, an enzyme, a mediator and a binding agent. The conductive material, enzyme, mediator, and binding agent are formulated as a water-miscible aqueous-based dispersion wherein the binding agent becomes operatively water-insoluble upon drying.
摘要:
A method for manufacturing a portion of an enzymatic electrochemical-based sensor includes applying a water-miscible conductive ink to a substrate of an enzymatic electrochemical-based sensor. The water-miscible conductive ink includes a conductive material, an enzyme, a mediator, and a binding agent (that becomes operatively water-insoluble upon drying) formulated as a water-miscible aqueous-based dispersion. The method further includes the drying the water-miscible conductive ink to form a conductive layer on the substrate that includes an operatively water-insoluble binding agent.
摘要:
A method for manufacturing an analysis module with accessible electrically conductive contact pads includes forming an insulating substrate with an upper surface, a microchannel(s) within the upper surface, and electrically conductive contact pad(s) disposed on the upper surface. The method also includes producing a laminate layer with a bottom surface, electrode(s) on the laminate layer bottom surface, and electrically conductive trace(s) on the laminate layer bottom surface. The method further includes adhering the laminate layer to the insulating substrate such that a portion of the bottom surface of the laminate layer is adhered to a portion of the upper surface of the insulating substrate, each electrode is exposed to at least one microchannel; and each electrically conductive trace is electrically contacted to at least one electrically conductive contact pad. Furthermore, the adhering is such that at least one surface of the electrically conductive contact pad remains exposed and accessible for electrical connection.
摘要:
A microfluidic analytical system for monitoring an analyte (such as glucose) in a fluid sample (e.g., blood or ISF) includes an analysis module and an electrical device (for example, a meter or power supply). The analysis module includes an insulating substrate and a microchannel(s) within the insulating substrate's upper surface. The analysis module also includes a conductive contact pad(s) disposed on the upper surface of the insulating substrate and an electrode(s), with the electrode(s) being disposed over the microchannel. In addition, the analysis module includes an electrically conductive trace(s) that electrically connects the electrode to at least one electrically conductive contact pad. The analysis module also has a laminate layer disposed over the electrode, the electrically conductive trace, the microchannel and a portion of the upper surface of the insulating substrate. The electrically conductive contact pad of the analysis module has an accessible exposed surface for electrical connection to the electrical device.
摘要:
A fusible conductive ink for use in manufacturing microfluidic analytical systems includes micronised powder containing platinum and carbon, poly(bisphenol A-co-epichlorohydrin)-glycidyl end capped polymer, and a solvent. In addition, the ratio of micronised powder to poly(bisphenol A-co-epichlorohydrin)-glycidyl end capped polymer is in the range of 3:1 to 1:3. The fusible conductive inks can be employed in the manufacturing of microfluidic systems to form electrodes, electrically conductive traces and/or electrically conductive contact pads.
摘要:
A microfluidic analytical system for monitoring an analyte (for example, glucose) in a liquid sample (e.g., ISF) includes an analysis module with at least one micro-channel for receiving and transporting a liquid sample, at least one analyte sensor for measuring an analyte in the liquid sample and at least one position electrode. The analyte sensor(s) and position electrode(s) are in operative communication with the micro-channel. The microfluidic system also includes a meter configured for measuring an electrical characteristic (such as impedance or resistance) of the position electrode(s). Moreover, the measured electrical characteristic is dependent on the position of the liquid sample in the micro-channel that is in operative communication with the position electrode for which an electrical characteristic is measured.
摘要:
A fusible conductive ink for use in manufacturing microfluidic analytical systems includes micronised powder containing platinum and carbon, poly(bisphenol A-co-epichlorohydrin)-glycidyl end capped polymer, and a solvent. In addition, the ratio of micronised powder to poly(bisphenol A-co-epichlorohydrin)-glycidyl end capped polymer is in the range of 3:1 to 1:3. The fusible conductive inks can be employed in the manufacturing of microfluidic systems to form electrodes, electrically conductive traces and/or electrically conductive contact pads.
摘要:
An electrochemical-based analytical test strip for the determination of an analyte (such as glucose) in a bodily fluid sample (e.g., a whole blood sample) includes an electrically-insulating substrate, at least one working electrode disposed on the electrically-insulating substrate and a graded enzymatic reagent layer disposed on the at least one working electrode. The graded enzymatic reagent layer includes an upper reaction grade that contains an enzyme. The graded enzymatic layer also has a lower spacer grade devoid of the enzyme, the lower spacer grade disposed between the upper reaction grade and the working electrode such that the upper reaction grade is spaced equidistant from the working electrode by the lower spacer grade by a predetermined distance during use of the electrochemical-based analytical test strip. In addition, the upper reaction grade is configured and constituted such that an enzymatic reaction between the enzyme and a bodily fluid sample applied to the electrochemical-based analytical test strip is localized in the upper reaction grade and the lower spacer grade has predetermined mass transport characteristics for a component of the enzymatic reaction that cause mass transport of the component through the lower spacer grade to the working electrode to be slower than mass transport of the analyte through the bodily fluid sample to the upper reaction grade. A method for determining an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) includes applying a bodily fluid sample to such an electrochemical-based analytical test strip.
摘要:
A microfluidic analytical system for monitoring an analyte (for example, glucose) in a liquid sample (e.g., ISF) includes an analysis module with at least one micro-channel for receiving and transporting a liquid sample, at least one analyte sensor for measuring an analyte in the liquid sample and at least one position electrode. The analyte sensor(s) and position electrode(s) are in operative communication with the micro-channel. The microfluidic system also includes a meter configured for measuring an electrical characteristic (such as impedance or resistance) of the position electrode(s). Moreover, the measured electrical characteristic is dependent on the position of the liquid sample in the micro-channel that is in operative communication with the position electrode for which an electrical characteristic is measured.