摘要:
The invention relates to polyelectrolytes having backbone aromatic groups, and in particular to aromatic backbone group polyelectrolytes having high levels of sulfonation as well as cross-linking functionality. Preferably the polyelectrolyte back-bone is free of linear alkyl groups.
摘要:
The invention relates to polyelectrolytes having backbone aromatic groups, and in particular to aromatic backbone group polyelectrolytes having high levels of sulfonation as well as cross-linking functionality. Preferably the polyelectrolyte backbone is free of linear alkyl groups.
摘要:
The invention relates to polymeric resin blends containing polyelectrolyte resins blended into a polymer or copolymer matrix. Specifically, the polyelectrolyte resins are (co)polymers without hydrolyzable groups. The matrix polymer is a tough, and highly chemical-resistant (co)polymer, preferably a fluoropolymer. The polymeric resin blend is useful for forming films, and especially films useful for MEAs for use in fuel cells.
摘要:
The invention relates to composite blend membranes formed from blends of one or more polyelectrolytes, and one or more types of nanoparticles. Preferably the blend also includes one or more fluoropolymers. The addition of the nanoparticles was found to enhance the conductivity and mechanical properties of the membranes.
摘要:
The invention relates to composite blend membranes formed from blends of one or more polyelectrolytes, and one or more types of nanoparticles. Preferably the blend also includes one or more fluoropolymers. The addition of the nanoparticles was found to enhance the conductivity and mechanical properties of the membranes.
摘要:
The invention relates to a novel synthesis method for forming superacid functional molecules that include monomers, as well as new polymers and copolymers formed from the monomers, and uses for these superacid molecules, polymers, and copolymers. The superacid molecules have an alpha,alpha-difluorosulfonic acid functionality that can be obtained by a reaction between various Grignard reagents and an alkyl(2-fluorosulfonyl)-1,1-difluoroacetate, such as methyl(2-fluorosulfonyl-1,1-difluoroacetate. The molecules, polymers and copolymers would be expected to have enhanced ion conductivity, and would be useful in a variety of applications, including as ion-conductive materials, surfactants, and ion exchange resins.
摘要:
The invention relates to a novel synthesis method for forming superacid functional molecules that include monomers, as well as new polymers and copolymers formed from the monomers, and uses for these superacid molecules, polymers, and copolymers. The superacid molecules have an alpha, alpha-difluorosulfonic acid functionality that can be obtained by a reaction between various Grignard reagents and an alkyl(2-fluorosulfonyl)-1,1-difluoroacetate, such as methyl (2-fluorosulfonyl-1,1-difluoroacetate. The molecules, polymers and copolymers would be expected to have enhanced ion conductivity, and would be useful in a variety of applications, including as ion-conductive materials, surfactants, and ion exchange resins.
摘要:
The invention relates to polymeric resin blends containing polyelectrolyte resins blended into a polymer or copolymer matrix. Specifically, the polyelectrolyte resins are (co)polymers without hydrolyzable groups. The matrix polymer is a tough, and highly chemical-resistant (co)polymer, preferably a fluoropolymer. The polymeric resin blend is useful for forming films, and especially films useful for MEAs for use in fuel cells.
摘要:
The invention relates to polymeric resin blends containing polyelectrolyte resins blended into a polymer or copolymer matrix. Specifically, the polyelectrolyte resins are (co)polymers without hydrolyzable groups. The matrix polymer is a tough, and highly chemical-resistant (co)polymer, preferably a fluoropolymer. The polymeric resin blend is useful for forming films, and especially films useful for MEAs for use in fuel cells.
摘要:
The invention relates to polymeric resin blends containing polyelectrolyte resins blended into a polymer or copolymer matrix. Specifically, the polyelectrolyte resins are (co)polymers without hydrolyzable groups. The matrix polymer is a tough, and highly chemical-resistant (co)polymer, preferably a fluoropolymer. The polymeric resin blend is useful for forming films, and especially films useful for MEAs for use in fuel cells.