Abstract:
The invention concerns a magnetic memory, whereof each memory point consists of a magnetic tunnel junction (60), comprising: a magnetic layer, called trapped layer (61), whereof the magnetization is rigid; a magnetic layer, called free layer (63), whereof the magnetization may be inverse; and insulating layer (62), interposed between the free layer (73) and the trapped layer (71) and respectively in contact with said two layers. The free layer (63) is made with an amorphous or nanocrytallized alloy based on rare earth or a transition metal, the magnetic order of said alloy being of the ferromagnetic type, said free layer having a substantially planar magnetization.
Abstract:
The invention relates to a magnetic memory with write inhibit selection and the writing method for same. Each memory element of the invention comprises a magnetic tunnel junction (70) consisting of: a magnetic layer, known as the trapped layer (71), having hard magnetisation; a magnetic layer, known as the free layer (73), the magnetisation of which may be reversed; and an insulating layer (72) which is disposed between the free layer (73) and the trapped layer (71) and which is in contact with both of said layers. The free layer (73) is made from an amorphous or nanocrystalline alloy based on rare earth and a transition metal, the magnetic order of said alloy being of the ferrimagnetic type. The selected operating temperature of the inventive memory is close to the compensation temperature of the alloy.
Abstract:
The invention concerns a magnetic memory, whereof each memory point consists of a magnetic tunnel junction (60), comprising: a magnetic layer, called trapped layer (61), whereof the magnetization is rigid; a magnetic layer, called free layer (63), whereof the magnetization may be inverse; and insulating layer (62), interposed between the free layer (73) and the trapped layer (71) and respectively in contact with said two layers. The free layer (63) is made with an amorphous or nanocrytallized alloy based on rare earth or a transition metal, the magnetic order of said alloy being of the ferromagnetic type, said free layer having a substantially planar magnetization.
Abstract:
The invention relates to a magnetic memory with write inhibit selection and the writing method for same. Each memory element of the invention comprises a magnetic tunnel junction (70) consisting of: a magnetic layer, known as the trapped layer (71), having hard magnetisation; a magnetic layer, known as the free layer (73), the magnetisation of which may be reversed; and an insulating layer (72) which is disposed between the free layer (73) and the trapped layer (71) and which is in contact with both of said layers. The free layer (73) is made from an amorphous or nanocrystalline alloy based on rare earth and a transition metal, the magnetic order of said alloy being of the ferrimagnetic type. The selected operating temperature of the inventive memory is close to the compensation temperature of the alloy.
Abstract:
A content-addressable random access memory having magnetic tunnel junction-based memory cells and methods for making and using same. The magnetic tunnel junction has first and second magnetic layers and can act as a data store and a data sense. Within each cell, registered data is written by setting a magnetic orientation of the first magnetic layer in the magnetic tunnel junction via current pulses in one or more current lines. Input data for comparison with the registered data can be similarly set through the magnetic orientation of the second magnetic layer via the current lines. The data sense is performed by measuring cell resistance, which depends upon the relative magnetic orientation of the magnetic layers. Since data storage, data input, and data sense are integrated into one cell, the memory combines higher densities with non-volatility. The memory can support high speed, reduced power consumption, and data masking.
Abstract:
A content-addressable random access memory having magnetic tunnel junction-based memory cells and methods for making and using same. The magnetic tunnel junction has first and second magnetic layers and can act as a data store and a data sense. Within each cell, registered data is written by setting a magnetic orientation of the first magnetic layer in the magnetic tunnel junction via current pulses in one or more current lines. Input data for comparison with the registered data can be similarly set through the magnetic orientation of the second magnetic layer via the current lines. The data sense is performed by measuring cell resistance, which depends upon the relative magnetic orientation of the magnetic layers. Since data storage, data input, and data sense are integrated into one cell, the memory combines higher densities with non-volatility. The memory can support high speed, reduced power consumption, and data masking.
Abstract:
This magnetic memory with a thermally-assisted write, every storage cell of which consists of at least one magnetic tunnel junction, said tunnel junction comprising at least:one magnetic reference layer, the magnetization of which is always oriented in the same direction at the time of the read of the storage cell; one so-called “free” magnetic storage layer, the magnetization direction of which is variable; one insulating layer sandwiched between the reference layer and the storage layer. The magnetization direction of the reference layer is polarized in a direction that is substantially always the same at the time of a read due to magnetostatic interaction with another fixed-magnetization layer called the “polarizing layer”.
Abstract:
A matrix array of recording heads, wherein each head is independent from another both in terms of its magnetic circuit and excitation conductors. Each individual head has a planar magnetic circuit and an helical coil wrapped around the lower part of the magnetic circuit. The matrix array is collectively fabricated using full thin film technology on non-magnetic substrates. Preferably, the heads are aligned in an oblique lattice with the write gaps aligned along rows and offset by a constant value along columns. Each individual head is connected to the control electronics through interconnects to the backside of the wafer, allowing independent control of the write parameters. The die forming the device is shaped on its edges and top surface to optimize head/medium positioning and minimize wear.
Abstract:
A content-addressable random access memory having magnetic tunnel junction-based memory cells and methods for making and using same. The magnetic tunnel junction has first and second magnetic layers and can act as a data store and a data sense. Within each cell, registered data is written by setting a magnetic orientation of the first magnetic layer in the magnetic tunnel junction via current pulses in one or more current lines. Input data for comparison with the registered data can be similarly set through the magnetic orientation of the second magnetic layer via the current lines. The data sense is performed by measuring cell resistance, which depends upon the relative magnetic orientation of the magnetic layers. Since data storage, data input, and data sense are integrated into one cell, the memory combines higher densities with non-volatility. The memory can support high speed, reduced power consumption, and data masking.
Abstract:
The present disclosure concerns a magnetic random access memory cell containing a magnetic tunnel junction formed from an insulating layer comprised between a sense layer and a storage layer. The present disclosure also concerns a method for writing and reading the memory cell comprising, during a write operation, switching a magnetization direction of said storage layer to write data to said storage layer and, during a read operation, aligning magnetization direction of said sense layer in a first aligned direction and comparing said write data with said first aligned direction by measuring a first resistance value of said magnetic tunnel junction. The disclosed memory cell and method allow for performing the write and read operations with low power consumption and an increased speed.