摘要:
The present invention relates to a polymer microsphere comprising at least one polymer and at least one bound latent colorant, wherein the microsphere is stabilized by at least one stabilizing polymer. The invention also includes a method of preparing polymer microspheres comprising combining latent colorant, ethylenically unsaturated monomer, stabilizing polymer, and an initiator in solvent and initiating polymerization to form a polymeric microsphere stabilized by a stabilizing polymer bound to the surface of the polymeric microsphere.
摘要:
The present invention relates to a polymer microsphere comprising at least one polymer and at least one bound latent colorant, wherein the microsphere is stabilized by at least one stabilizing polymer. The invention also includes a method of preparing polymer microspheres comprising combining latent colorant, ethylenically unsaturated monomer, stabilizing polymer, and an initiator in solvent and initiating polymerization to form a polymeric microsphere stabilized by a stabilizing polymer bound to the surface of the polymeric microsphere.
摘要:
The present invention relates to a nanogel comprising a polymer network of repetitive, crosslinked, ethylenically unsaturated monomers of Formula I: (X)m-(Y)n-(Z)o Formula I wherein X is a water-soluble monomer containing ionic or hydrogen bonding moieties; Y is a water-soluble macromonomer containing repetitive hydrophilic units bound to a polymerizeable ethylenically unsaturated group; Z is a multifunctional crosslinking monomer; m ranges from 50-90 mol %; n ranges from 2-30 mol %; and o range from 1-15 mol % and a method for preparing a nanogel comprising preparing a header composition of a mixture of monomers X, Y, and Z, and a first portion of initiators in water; preparing a reactor composition of a second portion initiators, surfactant, and water; bringing the reactor composition to the polymerization temperature; holding the reactor composition at the polymerization temperature, and adding the header composition to the reactor composition to form a nanogel of Formula I.
摘要:
The present invention relates to a biological microarray element comprising a support having disposed thereon at least one layer comprising filler and gelatin, and at least one functional compound, wherein the functional compound comprises a first functional group capable of interacting with gelatin and a second functional group capable of interacting with a biological capture agent, wherein the first functional group is the same as or different from the second functional group. Also provided is a method of making a biological microarray element comprising providing a support; and coating a layer comprising filler and gelatin and at least one functional compound, wherein the functional compound comprises a first functional group capable of interacting with the gelatin and a second functional group capable of interacting with a biological capture agent, wherein the first functional group is the same as or different from the second functional group.
摘要:
The present invention relates to a microarray comprising a support having attached to a surface thereof at least one porous layer, wherein the porous layer comprises a hydrophilic binder and polymer particles. The present invention also relates to a method of using a microarray comprising providing a microarray comprising a support having attached to a surface thereof at least one porous layer, wherein the porous layer comprises a hydrophilic binder and polymer particles; contacting the microarray with biological targets labeled with optical emission tag; and measuring the signals from the optical emission tag.
摘要:
The present invention relates to a polymer particles comprising a polymer bead stabilized by vinylsulfonyl-functionalized polymers grafted to the surface of the bead, as well as a particle composition comprising monodisperse polymer beads stabilized by vinylsulfonyl-functionalized polymers, wherein the vinylsulfonyl-functionalized polymers are grafted to the surfaces of the beads. The invention also includes a method of preparing monodisperse polymer particles comprising preparing a homogeneous solution of an ethylenically unsaturated polymerizable monomer, an initiator, and a polymeric stabilizer, wherein the polymeric stabilizer consists of repetitive units, wherein the repetitive units comprise latent vinylsulfonyl moiety, polymerizing the homogeneous solution, and converting the latent vinylsulfonyl moiety to vinylsulfonyl moieties.
摘要:
A microarray comprising: a support, on which is disposed a layer of microspheres bearing biological probes; wherein said microspheres comprise at least one material with a latent color that can be developed and used to identify said microsphere. A method of identifying biological analytes using the microarray is also disclosed.
摘要:
A method for preparing a semiconductor wafer into individual semiconductor dies uses both a dicing before grinding step and/or via hole micro-fabrication step, and an adhesive coating step.
摘要:
Thermally developable imaging materials have an outermost protective layer that is composed of one or more hydrophilic film-forming components. Between the outermost protective layer and the underlying thermally developable imaging layers is an interlayer containing a film-forming ionic latex polymer other than a carboxy-containing latex polymer. This ionic polymer can be negatively-charged or positively-charged. The ionic latex polymer is present as latex particles that have been prepared in the presence of a stabilizer in an amount of at least 0.5% (by weight) that has an HLB value of 7 to 20. The stabilizer becomes associated with the latex polymer particles. Both thermographic and photothermographic materials can be prepared with such protective layers.
摘要:
The present invention relates to a bi-functional compound containing a linking material, and a particle comprising a linking material, and a linking material comprising a polyethylene glycol macromonomer backbone with a radical polymerizable group at one end of the macromonomer backbone and a different reactive chemical functionality at the other end of the macromonomer backbone, according to Formula I: wherein X is CH3, CN or H; Y is O, NR1, or S; L is a linking group or spacer; FG is a functional group; n is greater than 4 and less than 1000; and wherein R1 and R2 are independently selected from substituted or unsubstituted alkyl, aryl, or heteroyl.