摘要:
Formation of the magnetic sensor layers of a magnetic sensor are separated into at least two depositions to reduce the dimension of the sensor. The free layer portion of the sensor is deposited at a different process step than the pinned layer portion. The top of the free layer stack can be a tunnel barrier, the free layer, or part of the free layer. The free layer stack also may contain an in-stack bias layer. The longitudinal bias layer may be patterned in a separate processing step, which allows the stack containing the free layer to be effectively thinner and allow smaller track width dimensions.
摘要:
Current-perpendicular-to-the-plane (CPP), current-in-to-the-plane (CIP), and tunnel valve type sensors are provided having an antiparallel (AP) coupled free layer structure, an in-stack biasing structure which stabilizes the AP coupled free layer structure and a nonmagnetic spacer layer formed between the in-stack biasing layer and the AP coupled free layer structure. The AP coupled free layer structure has a first AP coupled free layer adjacent to the nonmagnetic spacer layer, a second AP coupled free layer, and an antiparallel coupling (APC) layer formed between the first and the second AP coupled free layers. The net moment of the AP coupled free layer structure has an antiparallel edge magnetostatic coupling with the in-stack biasing structure. At the same time, the first AP coupled free layer has an antiparallel exchange coupling with the second AP coupled free layer. By forming the second AP coupled free layer with a thickness greater than a thickness of the first AP coupled free layer, the AP coupled free layer structure has a net magnetic moment in the direction of the second AP coupled free layer moment. The non-magnetic spacer layer is chosen so that first AP coupled free layer has a parallel interlayer (Neel or Orange-peel or positive exchange) coupling with the in-stack biasing structure, so that the interlayer coupling adds to the edge magnetostatic coupling to increase a stability of the AP coupled free layer structure.
摘要:
A semiconductor slider including an integral spin valve transistor (SVT) having a read width of 250 nm or less disposed on a monolithic semiconductor. substrate, useful in magnetic data storage applications. The monolithic slider may also include other magnetic and semiconductor transistor structures and is fabricated in a single process using standard thin-film processing steps. The SVT includes a sensor stack having a top surface and including a first ferromagnetic (FM) layer in contact with and forming a Schottky barrier at the monolithic semiconductor substrate, a FM shield layer disposed over the sensor stack and in electrical contact with the top surface thereof, a SVT emitter terminal coupled to the FM shield, a SVT collector terminal coupled to the substrate and a SVT base terminal coupled to the first FM layer. The sensor stack may include a spin valve (SV) stack or a tunnel valve (TV) stack, for example.
摘要:
A semiconductor slider including an integral spin valve transistor (SVT) having a read width of 250 nm or less disposed on a monolithic semiconductor substrate, useful in magnetic data storage applications. The monolithic slider may also include other magnetic and semiconductor transistor structures and is fabricated in a single process using standard thin-film processing steps. The SVT includes a sensor stack having a top surface and including a first ferromagnetic (FM) layer in contact with and forming a Schottky barrier at the monolithic semiconductor substrate, a FM shield layer disposed over the sensor stack and in electrical contact with the top surface thereof, a SVT emitter terminal coupled to the FM shield, a SVT collector terminal coupled to the substrate and a SVT base terminal coupled to the first FM layer. The sensor stack may include a spin valve (SV) stack or a tunnel valve (TV) stack, for example.
摘要:
A microwave bandstop filter having a magnetic strip formed over dielectric material. The magnetic resonant frequency is controlled by an induced magnetic anisotropy in the magnetic strip of the microwave bandstop filter. The magnetic anisotropy field is induced by an anisotropic surface texture formed on the surface of the magnetic strip itself, or formed on an underlying layer. Alternatively, the anisotropic surface texture could be formed on both an underlying layer and on the magnetic strip itself. This induced magnetic anisotropy field allows the resonant frequency of the microwave filter to be controlled over a wide frequency range and make high frequency operation possible without reliance on the application of an externally applied magnetic field.
摘要:
A magnetoresistive sensor having an in stack bias layer with an engineered magnetic anisotropy in a direction parallel with the medium facing surface. The in-stack bias layer may be constructed of CoPt, CoPtCr or some other magnetic material and is deposited over an underlayer that has been ion beam etched. The ion beam etch has been performed at an angle with respect to normal in order to form anisotropic roughness in form of oriented ripples or facets. The anisotropic roughness induces a uniaxial magnetic anisotropy substantially parallel to the medium facing surface in the hard magnetic in-stack bias layer deposited thereover.
摘要:
A spin valve transistor (SVT) for a magnetic head and a method of making the same are described. A slider of a disk drive is formed of a semiconductor material, such as silicon. A free layer is formed over the semiconductor material and a magnetic pinned layer is formed over a portion of the free layer. The free layer has an edge that is substantially flush with an air bearing surface (ABS) between the magnetic head and the disk, whereas the magnetic pinned layer has an edge that is recessed away from the ABS. Advantageously, since the free layer serves as a flux guiding structure for the sensor, the sensor has a thinner profile at the ABS to accommodate higher recording densities.
摘要:
The current invention provides for magnetic sensor devices with reduced gap thickness and improved thermal conductivity. Gap structures of the current invention are integrated in laminated Magneto-Resistive and Spin-Valve sensors used in magnetic data storage systems. The gap structures are produced by depositing metal layers and oxidizing portions of or all of the metal layers to form thin high quality oxidized metal dielectric separator layers. The oxidized metal layer provides for excellent electrical insulation of the sensor element and any remaining metallic portions of the metal layers provide a thermally conducting pathway to assist the dissipation of heat generated by the sensor element. Because of the combined qualities of electrical insulation and thermal conductivity, magnetic sensor devices of this invention can be made with thinner gap structures and operated at higher drive currents. Further, oxidized metal layers provide suitable surfaces to growing oxidized metal gap insulator layers of any thickness.
摘要:
A current perpendicular to plane magnetoresistive sensor having improved resistance amplitude change and reduced spin torque noise. The sensor has an antiparallel coupled pinned layer structure with at least one of the layers of the pinned layer structure includes a high spin polarization material such as Co2FeGe. The sensor can also include an antiparallel coupled free layer.
摘要:
A magnetoresistive sensor having a hard bias layer with an engineered magnetic anisotropy in a direction substantially parallel with the medium facing surface. The hard bias layer may be constructed of CoPt, CoPtCr or some other magnetic material and is deposited over an underlayer that has been ion beam etched. The ion beam etch has been performed at an angle with respect to normal in order to induce anisotropic roughness on its surface for example in form of oriented ripples or facets. The anisotropic roughness induces a uniaxial magnetic anisotropy substantially parallel to the medium facing surface in the hard magnetic bias layers deposited there over.