摘要:
A method and implementing system are provided which includes a DMA controller coupled to a slave bus controller through a processor local bus. The slave bus controller is also coupled to a memory unit. The memory unit is connected directly to a peripheral device. The DMA controller is arranged to receive a data transfer request from the peripheral unit and initiate a transfer cycle with the slave bus controller. The slave bus controller is selectively operable to assert a transfer signal to the memory unit which enables data movement directly between memory and the peripheral device in accordance with the request from the peripheral device. Upon completion of the address transfer and prior to the completion of the data transfer, the slave bus controller generates a transfer complete signal back to the peripheral device. This technique allows for a DMA FlyBy transfer to be overlapped with a subsequent processor local bus transfer.
摘要:
Different software applications may use a set of instructions having critical timing paths less than a worst case critical timing path of a processor complex. For such applications, a supply voltage may be reduced while still maintaining the clock frequency necessary to meet the application's performance requirements. In order to reduce the supply voltage, an adaptive voltage scaling method is used. A critical path is selected from a plurality of critical paths for analysis on emulation logic to determine an attribute of the selected critical path during on chip functional operations. The selected critical path is representative of the worst case critical path to be in operation during a program execution. During on-chip functional operations, a voltage is controlled in response to the attribute, wherein the voltage supplies power to a power domain associated with the plurality of critical paths. The reduction in voltage reduces power drain based on instruction set usage allowing battery life to be extended.
摘要:
Different software applications may use a set of instructions having critical timing paths less than a worst case critical timing path of a processor complex. For such applications, a supply voltage may be reduced while still maintaining the clock frequency necessary to meet the application's performance requirements. In order to reduce the supply voltage, an adaptive voltage scaling method is used. A critical path is selected from a plurality of critical paths for analysis on emulation logic to determine an attribute of the selected critical path during on chip functional operations. The selected critical path is representative of the worst case critical path to be in operation during a program execution. During on-chip functional operations, a voltage is controlled in response to the attribute, wherein the voltage supplies power to a power domain associated with the plurality of critical paths. The reduction in voltage reduces power drain based on instruction set usage allowing battery life to be extended.
摘要:
A process and system for transferring data including at least one slave device connected to at least one master device through an arbiter device. The master and slave devices are connected by a single address bus, a write data bus and a read data bus. The arbiter device receives requests for data transfers from the master devices and selectively transmits the requests to the slave devices. The master devices and the slave devices are further connected by a plurality of transfer qualifier signals which may specify predetermined characteristics of the requested data transfers. Control signals are also communicated between the arbiter device and the slave devices to allow appropriate slave devices to latch addresses of requested second transfers during the pendency of current or primary data transfers so as to obviate an address transfer latency typically required for the second transfer. The design is configured to advantageously function in mixed systems which may include address-pipelining and non-address-pipelining slave devices.
摘要:
Methods and apparatus for voltage scaling are provided. In an example, an operational limit of a processor is determined by varying a supply voltage to force a processor interrupt fault and/or a processor reset. A clock frequency and the supply voltage can be maintained substantially constant for a time duration. If these operational parameters do not force the processor interrupt fault and/or the processor reset, the supply voltage is varied again, and the clock frequency and the supply voltage are maintained substantially constant for a second time duration. The variation continues until initiation of the processor interrupt fault and/or the processor reset, at which time least one of a clock frequency, the supply voltage, and a temperature are recorded as an operational limit. After determining the operational limit, the supply voltage is adjusted to within the operational limit.
摘要:
Adaptive clock generators, systems, and related methods than can be used to generate a clock signal for a functional circuit to avoid or reduce performance margin are disclosed. In certain embodiments, a clock generator autonomously and adaptively generates a clock signal according to a delay path(s) provided in a delay circuit(s) relating to a selected delay path(s) in the functional circuit(s). The clock generator includes a delay circuit(s) adapted to receive an input signal and delay the input signal by an amount relating to a delay path(s) of a functional circuit(s) to produce an output signal. A feedback circuit is coupled to the delay circuit(s) and responsive to the output signal, wherein the feedback circuit is adapted to generate the input signal back to the delay circuit(s) in an oscillation loop configuration. The input signal can be used to provide a clock signal to the functional circuit(s).
摘要:
A phase-locked loop employing a plurality of oscillator complexes is disclosed. The phase-locked loop includes a clock output and a plurality of oscillator complexes operable to generate output signals. The phase-locked loop further includes control logic which is configured to selectively couple an output signal of one of the plurality of oscillator complexes to the clock output.
摘要:
Hazard detection is simplified by converting a conditional instruction, operative to perform an operation if a condition is satisfied, into an emissary instruction operative to evaluate the condition and an unconditional base instruction operative to perform the operation. The emissary instruction is executed, while the base instruction is halted. The emissary instruction evaluates the condition and reports the condition evaluation back to the base instruction. Based on the condition evaluation, the base instruction is either launched into the pipeline for execution, or it is discarded (or a NOP, or null instruction, substituted for it). In either case, the dependencies of following instructions may be resolved.
摘要:
A register file is disclosed. The register file includes a plurality of registers and a decoder. The decoder may be configured to receive an address for any one of the registers, and disable a read operation to the addressed register if data in the addressed register is invalid.
摘要:
Data from a source domain operating at a first data rate is transferred to a FIFO in another domain operating at a different data rate. The FIFO buffers data before transfer to a sink for further processing or storage. A source side counter tracks space available in the FIFO. In disclosed examples, the initial counter value corresponds to FIFO depth. The counter decrements in response to a data ready signal from the source domain, without delay. The counter increments in response to signaling from the sink domain of a read of data off the FIFO. Hence, incrementing is subject to the signaling latency between domains. The source may send one more beat of data when the counter indicates the FIFO is full. The last beat of data is continuously sent from the source until it is indicated that a FIFO position became available; effectively providing one more FIFO position.