CPP head with parasitic shunting reduction
    1.
    发明申请
    CPP head with parasitic shunting reduction 有权
    CPP头与寄生分流减少

    公开(公告)号:US20080050615A1

    公开(公告)日:2008-02-28

    申请号:US11901584

    申请日:2007-09-18

    IPC分类号: G11B5/33

    摘要: The series resistance of a CPP GMR stack can be reduced by shaping it into a small upper, on a somewhat larger, lower part. Because of the sub-micron dimensions involved, good alignment between these is normally difficult to achieve. The present invention discloses a self-alignment process based on first laying down a mask that will determine the shape of the top part. Ion beam etching is then initiated, the ion beam being initially applied from one side only at an angle to the surface normal. During etching, all material on the near side of the mask gets etched but, on the far side, only material that is outside the mask's shadow gets removed so, depending on the beam's angle, the size of the lower part is controlled and the upper part is precisely centrally aligned above it.

    摘要翻译: CPP GMR堆叠的串联电阻可以通过将其成形为较小的上部,在较小的较低部分上来减小。 由于涉及亚微米尺寸,这些之间的良好对准通常难以实现。 本发明公开了一种基于第一次铺设掩模的自对准过程,该掩模将确定顶部的形状。 然后开始离子束蚀刻,离子束最初仅从一侧以与表面法线成一定角度施加。 在蚀刻期间,掩模近侧的所有材料都被蚀刻,但在远侧,只有在掩模阴影之外的材料被去除,因此根据光束的角度,下部的尺寸被控制,并且上部 部分精确地集中在其上。

    CPP head with parasitic shunting reduction
    2.
    发明申请
    CPP head with parasitic shunting reduction 有权
    CPP头与寄生分流减少

    公开(公告)号:US20050130070A1

    公开(公告)日:2005-06-16

    申请号:US10734422

    申请日:2003-12-12

    IPC分类号: G03F7/00 G11B5/31 G11B5/39

    摘要: The series resistance of a CPP GMR stack can be reduced by shaping it into a small upper, on a somewhat larger, lower part. Because of the sub-micron dimensions involved, good alignment between these is normally difficult to achieve. The present invention discloses a self-alignment process based on first laying down a mask that will determine the shape of the top part. Ion beam etching is then initiated, the ion beam being initially applied from one side only at an angle to the surface normal. During etching, all material on the near side of the mask gets etched but, on the far side, only material that is outside the mask's shadow gets removed so, depending on the beam's angle, the size of the lower part is controlled and the upper part is precisely centrally aligned above it.

    摘要翻译: CPP GMR堆叠的串联电阻可以通过将其成形为较小的上部,在较小的较低部分上来减小。 由于涉及亚微米尺寸,这些之间的良好对准通常难以实现。 本发明公开了一种基于第一次铺设掩模的自对准过程,该掩模将确定顶部的形状。 然后开始离子束蚀刻,离子束最初仅从一侧以与表面法线成一定角度施加。 在蚀刻期间,掩模近侧的所有材料都被蚀刻,但在远侧,只有在掩模阴影之外的材料被去除,因此根据光束的角度,下部的尺寸被控制,并且上部 部分精确地集中在其上。

    CPP head with parasitic shunting reduction
    3.
    发明授权
    CPP head with parasitic shunting reduction 有权
    CPP头与寄生分流减少

    公开(公告)号:US07279269B2

    公开(公告)日:2007-10-09

    申请号:US10734422

    申请日:2003-12-12

    IPC分类号: G11B5/39

    摘要: The series resistance of a CPP GMR stack can be reduced by shaping it into a small upper, on a somewhat larger, lower part. Because of the sub-micron dimensions involved, good alignment between these is normally difficult to achieve. The present invention discloses a self-alignment process based on first laying down a mask that will determine the shape of the top part. Ion beam etching is then initiated, the ion beam being initially applied from one side only at an angle to the surface normal. During etching, all material on the near side of the mask gets etched but, on the far side, only material that is outside the mask's shadow gets removed so, depending on the beam's angle, the size of the lower part is controlled and the upper part is precisely centrally aligned above it.

    摘要翻译: CPP GMR堆叠的串联电阻可以通过将其成形为较小的上部,在较小的较低部分上来减小。 由于涉及亚微米尺寸,这些之间的良好对准通常难以实现。 本发明公开了一种基于第一次铺设掩模的自对准过程,该掩模将确定顶部的形状。 然后开始离子束蚀刻,离子束最初仅从一侧以与表面法线成一定角度施加。 在蚀刻期间,掩模近侧的所有材料都被蚀刻,但在远侧,只有在掩模阴影之外的材料被去除,因此根据光束的角度,下部的尺寸被控制,并且上部 部分精确地集中在其上。

    CPP head with parasitic shunting reduction
    4.
    发明授权
    CPP head with parasitic shunting reduction 有权
    CPP头与寄生分流减少

    公开(公告)号:US07864490B2

    公开(公告)日:2011-01-04

    申请号:US11901584

    申请日:2007-09-18

    IPC分类号: G11B5/33

    摘要: The series resistance of a CPP GMR stack can be reduced by shaping it into a small upper, on a somewhat larger, lower part. Because of the sub-micron dimensions involved, good alignment between these is normally difficult to achieve. The present invention discloses a self-alignment process based on first laying down a mask that will determine the shape of the top part. Ion beam etching is then initiated, the ion beam being initially applied from one side only at an angle to the surface normal. During etching, all material on the near side of the mask gets etched but, on the far side, only material that is outside the mask's shadow gets removed so, depending on the beam's angle, the size of the lower part is controlled and the upper part is precisely centrally aligned above it.

    摘要翻译: CPP GMR堆叠的串联电阻可以通过将其成形为较小的上部,在较小的较低部分上来减小。 由于涉及亚微米尺寸,这些之间的良好对准通常难以实现。 本发明公开了一种基于第一次铺设掩模的自对准过程,该掩模将确定顶部的形状。 然后开始离子束蚀刻,离子束最初仅从一侧以与表面法线成一定角度施加。 在蚀刻期间,掩模近侧的所有材料都被蚀刻,但在远侧,只有在掩模阴影之外的材料被去除,因此根据光束的角度,下部的尺寸被控制,并且上部 部分精确地集中在其上。