摘要:
A method of forming a SiGe layer having a relatively high Ge content includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the Ge content of the SiGe layer is equal to or greater than 22%, by molecular weight; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm−2 to 5·1016 cm−2, at an energy of between about 20 keV to 45 keV; thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes; and depositing a layer of tensile-strained silicon on the relaxed SiGe layer to a thickness of between about 5 nm to 30 nm.
摘要翻译:形成Ge含量较高的SiGe层的方法包括制备硅衬底; 将SiGe层沉积至约100nm至500nm的厚度,其中SiGe层的Ge含量通过分子量等于或大于22%; 以约20keV至45keV之间的能量以约1.10 16 cm -2至5.10 16 cm -2的剂量将H +离子注入SiGe层; 热处理基板和SiGe层,以在约650℃至950℃的温度的惰性气氛中放松SiGe层约30秒至30分钟; 以及在弛豫的SiGe层上沉积拉伸应变硅层至约5nm至30nm的厚度。
摘要:
A method of forming a CMOS device includes preparing a silicon substrate, including forming plural device regions on the substrate; epitaxially forming a strained SiGe layer on the substrate, wherein the SiGe layer has a germanium content of between about 20% and 40%; forming a silicon cap layer epitaxially on the SiGe layer; depositing a gate oxide layer; depositing a first polysilicon layer; implanting H+ ions to a depth below the SiGe layer; forming a trench by shallow trench isolation which extends into the substrate; annealing the structure at a temperature of between about 700° C. to 900° C. for between about five minutes to sixty minutes; depositing an oxide layer and a second polysilicon layer, thereby filling the trench; planarizing the structure to the top of the level of the portion of the second polysilicon layer which is located in the trench; and completing the CMOS device.
摘要:
A method of forming a SiGe layer having a relatively high germanium content and a relatively low threading dislocation density includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the germanium content of the SiGe layer is greater than 20%, by atomic ratio; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm−2 to 5·1016 cm−2, at an energy of between about 20 keV to 45 keV; patterning the SiGe layer with photoresist; plasma etching the structure to form trenches about regions; removing the photoresist; and thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes.
摘要:
A CMOS active pixel sensor includes a silicon-on-insulator substrate having a silicon substrate with an insulator layer formed thereon and a top silicon layer formed on the insulator layer. A stacked pixel sensor cell includes a bottom photodiode fabricated on the silicon substrate, for sensing light of a longest wavelength; a middle photodiode fabricated on the silicon substrate, for sensing light of a medium wavelength, which is stacked above the bottom photodiode; and a top photodiode fabricated on the top silicon layer, for sensing light of a shorter wavelength, which is stacked above the middle and bottom photodiodes. Pixel transistor sets are fabricated on the top silicon layer and are associated with each pixel sensor cell by electrical connections which extend between each of the photodiodes and respective pixel transistor(s). CMOS control circuitry is fabricated adjacent to an array of active pixel sensor cells and electrically connected thereto.
摘要:
A thermally stable nickel germanosilicide on SiGe integrated circuit device, and a method of making the same, is disclosed. During fabrication of the device iridium or cobalt is added at the Ni/SiGe interface to decrease the sheet resistance of the device. The device comprising nickel silicide with iridium on SiGe shows thermal stability at temperatures up to 800° C. The device comprising nickel silicide with cobalt on SiGe shows a decrease in the sheet resistance with temperature, i.e., the resistance remains low when annealing temperatures extend up to and beyond 800° C.
摘要:
A CMOS active pixel sensor includes a silicon-on-insulator substrate having a silicon substrate with an insulator layer formed thereon and a top silicon layer formed on the insulator layer. A stacked pixel sensor cell includes a bottom photodiode fabricated on the silicon substrate, for sensing light of a longest wavelength; a middle photodiode fabricated on the silicon substrate, for sensing light of a medium wavelength, which is stacked above the bottom photodiode; and a top photodiode fabricated on the top silicon layer, for sensing light of a shorter wavelength, which is stacked above the middle and bottom photodiodes. Pixel transistor sets are fabricated on the top silicon layer and are associated with each pixel sensor cell by electrical connections which extend between each of the photodiodes and respective pixel transistor(s). CMOS control circuitry is fabricated adjacent to an array of active pixel sensor cells and electrically connected thereto.
摘要:
A thermally stable nickel germanosilicide on SiGe integrated circuit device, and a method of making the same, is disclosed. During fabrication of the device iridium or cobalt is added at the Ni/SiGe interface to decrease the sheet resistance of the device. The device comprising nickel silicide with iridium on SiGe shows thermal stability at temperatures up to 800° C. The device comprising nickel silicide with cobalt on SiGe shows a decrease in the sheet resistance with temperature, i.e., the resistance remains low when annealing temperatures extend up to and beyond 800° C.
摘要:
A floating body germanium (Ge) phototransistor and associated fabrication process are presented. The method includes: providing a silicon (Si) substrate; selectively forming an insulator layer overlying the Si substrate; forming an epitaxial Ge layer overlying the insulator layer using a liquid phase epitaxy (LPE) process; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers overlying the channel region; and, forming source/drain regions in the Ge layer. The LPE process involves encapsulating the Ge with materials having a melting temperature greater than a first temperature, and melting the Ge using a temperature lower than the first temperature. The LPE process includes: forming a dielectric layer overlying deposited Ge; melting the Ge; and, in response to cooling the Ge, laterally propagating an epitaxial growth front into the Ge from an underlying Si substrate surface.
摘要:
A method is provided for forming a matching thermal expansion interface between silicon (Si) and gallium nitride (GaN) films. The method provides a (111) Si substrate and forms a first aluminum (Al)-containing film in compression overlying the Si substrate. Nano-column holes are formed in the first Al-containing film, which exposes regions of the underlying Si substrate. A layer of GaN layer is selectively grown from the exposed regions, covering the first Al-containing film. The GaN is grown using a lateral nanoheteroepitaxy overgrowth (LNEO) process. The above-mentioned processes are reiterated, forming a second Al-containing film in compression, forming nano-column holes in the second Al-containing film, and selectively growing a second GaN layer. Film materials such as Al2O3, Si1-xGex, InP, GaP, GaAs, AlN, AlGaN, or GaN, may be initially grown at a low temperature. By increasing the growth temperatures, a compressed layer of epitaxial GaN can be formed on a Si substrate.
摘要翻译:提供了一种在硅(Si)和氮化镓(GaN)膜之间形成匹配的热膨胀界面的方法。 该方法提供(111)Si衬底并且在压缩覆盖Si衬底上形成第一含铝(Al)的膜。 在第一含Al膜中形成纳米柱孔,其暴露下面的Si衬底的区域。 从暴露区域选择性地生长GaN层,覆盖第一含Al膜。 使用横向纳米外延生长(LNEO)工艺生长GaN。 重复上述过程,在压缩中形成第二含Al膜,在第二含Al膜中形成纳米柱孔,并选择性地生长第二GaN层。 可以最初在低温下生长诸如Al 2 O 3 3,Si 1-x Ge x,InP,GaP,GaAs,AlN,AlGaN或GaN的膜材料。 通过增加生长温度,可以在Si衬底上形成外延GaN的压缩层。
摘要:
A floating body germanium (Ge) phototransistor with a photo absorption threshold bias region, and an associated fabrication process are presented. The method includes: providing a p-doped Silicon (Si) substrate; selectively forming an insulator layer overlying a first surface of the Si substrate; forming an epitaxial Ge layer overlying the insulator layer; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers; forming source/drain (S/D) regions in the Ge layer; and, forming a photo absorption threshold bias region in the Ge layer, adjacent the channel region. In one aspect, the second S/D region has a length, longer than the first S/D length. The photo absorption threshold bias region underlies the second S/D region. Alternately, the second S/D region is separated from the channel by an offset, and the photo absorption threshold bias region is the offset in the Ge layer, after a light p-doping.