摘要:
Disclosed and claimed are Bacillus thuringiensis isolates designated B.t. PS45B1, B.t. PS24J, B.t. PS94R3 B.t. PS17, B.t. PS62B1 and B.t. PS74G1 which are active against acarid pests. Thus, these isolates, or mutants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of acarid pests, whereas transformed plants become resistant to acarid pests.
摘要:
Disclosed and claimed are Bacillus thuringiensis isolates designated B.t. PS50C, B.t. PS86A1, B.t. PS69D1, B.t. PS72L1, B.t. PS75J1, B.t. PS83E5, B.t. PS45B1, B.t.. PS24J, B.t. PS94R3, B.t. PS17, B.t. PS62B1 and B.t. PS74G1 which are active against acaride pests. Thus, these isolates, or mutants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of acaride pests, whereas transformed plants become resistant to acaride pests.
摘要:
The subject invention concerns Bacillus thuringiensis isolates designated B.t. PS157C1, B.t. PS86A1, and B.t. PS75J1, which are active against aphid pests. Thus, these isolates, or variants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of aphid pests, whereas transformed plants become resistant to aphid pests.
摘要:
The subject invention concerns Bacillus thuringiensis isolates designated B.t. PS157C1, B.t. PS86A1, and B.t. PS75J1, which are active against aphid pests. Thus, these isolates, or variants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of aphid pests, whereas transformed plants become resistant to aphid pests.
摘要:
A novel B.t. toxin gene toxic to lepidopteran insects has been cloned from a novel lepidopteran-active B. thuringiensis microbe. The DNA encoding the B.t. toxin can be used to transform various prokaryotic and eukaryotic microbes to express the B.t. toxin. These recombinant microbes can be used to control lepidopteran insects in various environments.
摘要:
Disclosed and claimed are Bacillus thuringiensis isolates designated B.t. PS50C, B.t. PS86A1, B.t. PS69D1, B.t. PS75L1, B.t. PS75J1, B.t. PS83E5, B.t. PS45B1, B.t. PS24J, B.t. PS94R3, B.t. PS17, B.t. PS62B1 and B.t. PS74G1 which are active against acaride pests. Thus, these isolates, or mutants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of acaride pests, whereas transformed plants become resistant to acaride pests.
摘要:
The invention concerns novel isolates of Bacillus thuringiensis (B.t.) which contain a toxin(s) which is active against nematodes. This B.t. toxin(s) or B.t. isolate(s) can be used to treat animals and plants hosting susceptible nematodes.
摘要:
The subject invention concerns novel materials and methods for the control of cockroaches. Cockroaches are common house pests, and they create problems in hospitals, the food industry and in agriculture. According to the subject invention, activated toxins of Bacillus thuringiensis var. israelensis (B.t.i.) are used to control cockroaches. In one embodiment, the subject invention also concerns the use of B.t. PS123D1 to control cockroaches. A truncated form of a toxin obtained from PS123D1 having particular activity to cockroaches is also claimed for use in controlling the pest.
摘要:
The subject invention concerns a novel microbe and gene encoding a novel toxin protein with activity against insect pests of the order Coleoptera. Pests in the order Coleoptera do heavy damage to crops, e.g., corn. The novel Bacillus thuringiensis microbe of the invention is referred to as B.t. PS50C. The spores or crystals of this microbe, or mutants thereof, are useful to control coleopteran pests in various environments. The novel gene of the invention can be used to transform various hosts wherein the novel toxic protein can be expressed.
摘要:
The subject invention concerns Bacillus thuringiensis microbes with activity against select coleopteran pests e.g., Diabrotica sp., Hypera sp., and various flea beetles. For example, the B.t. isolates of the invention are active against alfalfa weevils--AW (Hypera brunneipennis), rape flea beetles--RFB (Phyllotreta cruciferae) and corn rootworms--CRW (Diabrotica undecimpunctata undecimpunctata). Thus, these microbes can be used to control these pests. Further, genes encoding toxins active against these pests can be isolated from the B.t. isolates and used to transform other microbes. The transformed microbes then can be used to control susceptible coleopteran pests.