摘要:
Aspects of the disclosure relate generally to maneuvering autonomous vehicles. Specifically, the vehicle may determine the uncertainty in its perception system and use this uncertainty value to make decisions about how to maneuver the vehicle. For example, the perception system may include sensors, object type models, and object motion models, each associated with uncertainties. The sensors may be associated with uncertainties based on the sensor's range, speed, and /or shape of the sensor field. The object type models may be associated with uncertainties, for example, in whether a perceived object is of one type (such as a small car) or another type (such as a bicycle). The object motion models may also be associated with uncertainties, for example, not all objects will move exactly as they are predicted to move. These uncertainties may be used to maneuver the vehicle.
摘要:
A method and apparatus are provided for determining one or more behavior models used by an autonomous vehicle to predict the behavior of detected objects. The autonomous vehicle may collect and record object behavior using one or more sensors. The autonomous vehicle may then communicate the recorded object behavior to a server operative to determine the behavior models. The server may determine the behavior models according to a given object classification, actions of interest performed by the object, and the object's perceived surroundings.
摘要:
Aspects of the invention relate generally to autonomous vehicles. Specifically, the features described may be used alone or in combination in order to improve the safety, use, driver experience, and performance of these vehicles.
摘要:
A method and apparatus are provided for determining one or more object models used by an autonomous vehicle to predict the behavior of detected objects. The autonomous vehicle may collect and record object behavior using one or more sensors. The autonomous vehicle may then communicate the recorded object behavior to a server operative to determine the object models. The server may determine the object models according to a given object classification, a particular driving environment, or a combination thereof. The server may then communicate the object models to the autonomous vehicle for use in predicting the actions of detected objects and for responding accordingly.
摘要:
Aspects of the invention relate generally to autonomous vehicles. Specifically, the features described may be used alone or in combination in order to improve the safety, use, driver experience, and performance of these vehicles.
摘要:
Aspects of the disclosure relate generally to detecting discrete actions by traveling vehicles. The features described improve the safety, use, driver experience, and performance of autonomously controlled vehicles by performing a behavior analysis on mobile objects in the vicinity of an autonomous vehicle. Specifically, an autonomous vehicle is capable of detecting and tracking nearby vehicles and is able to determine when these nearby vehicles have performed actions of interest by comparing their tracked movements with map data.
摘要:
An autonomous vehicle configured to determine the heading of an object-of-interest based on a point cloud. An example computer-implemented method involves: (a) receiving spatial-point data indicating a set of spatial points, each spatial point representing a point in three dimensions, where the set of spatial points corresponds to an object-of-interest; (b) determining, for each spatial point, an associated projected point, each projected point representing a point in two dimensions; (c) determining a set of line segments based on the determined projected points, where each respective line segment connects at least two determined projected points; (d) determining an orientation of at least one determined line segment from the set of line segments; and (e) determining a heading of the object-of-interest based on at least the determined orientation.
摘要:
Aspects of the present disclosure relate generally to safe and effective use of autonomous vehicles. More specifically, an autonomous vehicle is able to detect objects in its surroundings which are within the sensor fields. In response to detecting objects, the computer may adjust the autonomous vehicle's speed or change direction. In some examples, however, the sensor fields may be changed or become less reliable based on objects or other features in the vehicle's surroundings. As a result, the vehicle's computer may calculate the size and shape of the area of sensor diminution and a new sensor field based on this area of diminution. In response to identifying the area of sensor diminution or the new sensor field, the vehicle's computer may change the control strategies of the vehicle.
摘要:
Aspects of the disclosure relate generally to notifying a pedestrian of the intent of a self-driving vehicle. For example, the vehicle may include sensors which detect an object such as a pedestrian attempting or about to cross the roadway in front of the vehicle. The vehicle's computer may then determine the correct way to respond to the pedestrian. For example, the computer may determine that the vehicle should stop or slow down, yield, or stop if it is safe to do so. The vehicle may then provide a notification to the pedestrian of what the vehicle is going to or is currently doing. For example, the vehicle may include a physical signaling device, an electronic sign or lights, a speaker for providing audible notifications, etc.
摘要:
Aspects of the present disclosure relate generally to safe and effective use of autonomous vehicles. More specifically, an autonomous vehicle 301, 501 is able to detect objects in its surroundings which are within the sensor fields 410, 411, 430, 431, 420A-423A, 420B-423B, 570-75, 580. In response to detecting objects, the computer 110 may adjust the autonomous vehicle's speed or change direction. In some examples, however, the sensor fields may be changed or become less reliable based on objects or other features in the vehicle's surroundings. As a result, the vehicle's computer 110 may calculate the size and shape of the area of sensor diminution 620, 720 and a new sensor field based on this area of diminution. In response to identifying the area of sensor diminution or the new sensor field, the vehicle's computer may change the control strategies of the vehicle.