摘要:
The present disclosure relates to a stacked x-ray tube apparatus using a spacer, and more particularly, to a stacked x-ray tube apparatus using a spacer that makes it possible to reduce the size of an x-ray tube by forming a stacked structure, with electric insulation and predetermined gaps maintained for each electrode, by forming a stacked x-ray tube by inserting insulating spacers (for example, ceramic) between a exhausting port, a cathode, a gate, a focusing electrode, and an anode and bonding them with an adhesive substance, and then inserting a spacer between a field emitter on a cathode substrate and a gate hole connected with a gate electrode.
摘要:
Provided is a field emission lamp (FEL), which includes a plurality of cathode electrodes formed above a first substrate, an anode electrode formed under a second substrate to face the cathode electrode, a fluorescent layer composed of red, green and blue (RGB) patterns formed alternately on the anode electrode in an oblique direction, and a plurality of emitters formed on the cathode electrodes to correspond to the RGB patterns. According to the present invention, as an FEL having a fast response time is used as a backlight unit, a color breaking phenomenon can be prevented in a color sequential driving method.
摘要:
Provided is a field emission lamp (FEL), which includes a plurality of cathode electrodes formed above a first substrate, an anode electrode formed under a second substrate to face the cathode electrode, a fluorescent layer composed of red, green and blue (RGB) patterns formed alternately on the anode electrode in an oblique direction, and a plurality of emitters formed on the cathode electrodes to correspond to the RGB patterns. According to the present invention, as an FEL having a fast response time is used as a backlight unit, a color breaking phenomenon can be prevented in a color sequential driving method.
摘要:
The present disclosure relates to a field emission X-ray tube apparatus for facilitating cathode replacement, and more particularly, to a field emission X-ray tube apparatus for facilitating cathode replacement in which gates and cathodes are easily arranged through a joining member and a rotation preventing guide when gates and insulating spacers are rotated and joined with the cathodes while the cathodes and respective gates maintain electrical insulation, thereby easily replacing the cathodes.
摘要:
Provided is a manufacturing method of a CNT emitter with density controlled CNT, comprising: (i) fabricating a CNT paste by dispersing a carbon nanotube (CNT) powder, two kinds or more of inorganic fillers which have a lower melting temperature than the CNT and different oxidation degrees of the CNT, and an organic binder in a solvent; (ii) coating the CNT paste on an electrode formed above a substrate; (iii) sintering the substrate coated with the CNT paste to selectively oxidize the CNT around one kind of inorganic filler among two kinds or more of the inorganic fillers; and (iv) treating the surface of the CNT paste so that the surface of the CNT paste is activated.
摘要:
Disclosed is a field emitter, including: a cathode electrode in a shape of a tip; an emitter having a diameter smaller than a diameter of the cathode electrode and formed on the cathode electrode; and a gate electrode having a single hole and located above the emitter while maintaining a predetermined distance from the emitter.
摘要:
The present disclosure relates to an electric field emission x-ray tube apparatus equipped with a built-in getter, and more particularly, to an electric field emission x-ray tube apparatus equipped with a built-in getter that makes it possible to reduce the size of an x-ray tube by forming a stacked structure, with electric insulation and predetermined gaps maintained for each electrode, by manufacturing an x-ray tube having a stacked structure by inserting insulating spacers (for example, ceramic) between an exhausting port, a cathode, a gate, a focusing electrode, and an anode and bonding them with an adhesive substance, and then inserting a spacer between a field emitter on a cathode substrate and a gate hole connected with a gate electrode.
摘要:
An X-ray control unit using a monocrystalline material which controls only a specific wavelength of X-rays, by using the monocrystalline material as a filter. The X-ray control unit includes a light source configured to generate X-rays, an X-ray control filter formed of a monocrystalline material having grown in one direction and configured to filter the X-rays generated by the light source to reflect and transmit characteristic X-rays, and an adjustor configured to adjust the light source and the X-ray control filter to arbitrary angles. Since X-rays having a specific wavelength can be selectively used by using a filter, the X-rays can be easily controlled and their intensity can be easily regulated. A characteristic line of the X-rays can be controlled and their intensity can be regulated without directly controlling an X-ray source.
摘要:
The present disclosure relates to an electric field emission x-ray tube apparatus equipped with a built-in getter, and more particularly, to an electric field emission x-ray tube apparatus equipped with a built-in getter that makes it possible to reduce the size of an x-ray tube by forming a stacked structure, with electric insulation and predetermined gaps maintained for each electrode, by manufacturing an x-ray tube having a stacked structure by inserting insulating spacers (for example, ceramic) between an exhausting port, a cathode, a gate, a focusing electrode, and an anode and bonding them with an adhesive substance, and then inserting a spacer between a field emitter on a cathode substrate and a gate hole connected with a gate electrode.
摘要:
Provided is a manufacturing method of a CNT emitter with density controlled CNT, comprising: (i) fabricating a CNT paste by dispersing a carbon nanotube (CNT) powder, two kinds or more of inorganic fillers which have a lower melting temperature than the CNT and different oxidation degrees of the CNT, and an organic binder in a solvent; (ii) coating the CNT paste on an electrode formed above a substrate; (iii) sintering the substrate coated with the CNT paste to selectively oxidize the CNT around one kind of inorganic filler among two kinds or more of the inorganic fillers; and (iv) treating the surface of the CNT paste so that the surface of the CNT paste is activated.