摘要:
Non-planar via designs for sub-mounts on which to mount a LED or other optoelectronic device include a continuous layer of metal to conduct the current from the front-side (e.g., LED side) to the backside (e.g., SMD side) through the via and to provide a sufficiently stable and reliable under bump metallization for SMD soldering. Each UBM can be structured so that it does not fully cover the sidewall surfaces of the via that forms the front-to-backside interconnect. In some implementations, each via structure for the feedthrough metallization extends to a respective side-edge of the sub-mount.
摘要:
A package includes one or more optoelectronic components and a cap with an embedded glass window attached to a substrate. The optoelectronic component(s) is supported by the substrate and is capable of detecting or emitting light through the glass window. The glass window may serve as an optical filter. Techniques are disclosed for fabricating a relatively thin package with an embedded glass window in the cap.
摘要:
A package for an optoelectronic device (e.g., a light emitting device such as a LED) includes a sub-mount including a silicon substrate having a thickness in the range of 350 μm-700 μm. The optoelectronic device is mounted on a die attach pad on the front-side surface of the substrate. Feed-through metallization in one or more via structures electrically couples the die attach pad to a contact pad on the back-side surface of the substrate.
摘要:
A wafer-level method of fabricating a chip-to-wafer or wafer-to-wafer semiconductor packages includes etching a cavity into a first semiconductor wafer and etching vias in a bottom of the cavity. The cavity and sidewalls of the vias are selectively metallized. The cavity can be used to house either an electrical circuit component or to contain a device die. A second semiconductor wafer is placed over the cavity-side of the first semiconductor and is sealed to the first semiconductor wafer. A backside of the first semiconductor wafer is thinned to expose metallization in the vias and metal is deposited on the backside to form circuit routing paths.
摘要:
A package includes a sensor die with a micro component, such as a MEMS device, coupled to an integrated circuit which may include, for example, CMOS circuitry, and one or more electrically conductive bond pads near the periphery of the sensor die. A semiconductor cap structure is attached to the sensor die. The front side of the cap structure is attached to the sensor die by a seal ring to hermetically encapsulate an area of the sensor die where the micro component is located. The bond pads on the sensor die are located outside the area encapsulated by the seal ring. Electrical leads, which extend along outer side edges of the semiconductor cap structure from its front side to its back side, are coupled to the micro component via the bond pads.
摘要:
A wafer-level method of fabricating an opto-electronic component package, in which the opto-electronic component is mounted to a semiconductor wafer having first and second surfaces on opposite sides of the wafer. The method includes etching vias in the first surface of the semiconductor wafer. The first surface and surfaces in the vias are metallized, and the metal is structured to define a thermal pad and to define the anode and cathode contact pads. A carrier wafer is attached on the side of the semiconductor wafer having the first surface, and the semiconductor wafer is thinned from its second surface to expose the metallization in the vias. Metal is provided on the second surface, and the metal is structured to define a die attach pad and additional anode and cathode pads for the opto-electronic component. The opto-electronic component is mounted on the die attach pad and a protective cover is formed over the opto-electronic component.
摘要:
A package includes a sensor die with a micro component, such as a MEMS device, coupled to an integrated circuit which may include, for example, CMOS circuitry, and one or more electrically conductive bond pads near the periphery of the sensor die. A semiconductor cap structure is attached to the sensor die. The front side of the cap structure is attached to the sensor die by a seal ring to hermetically encapsulate an area of the sensor die where the micro component is located. The bond pads on the sensor die are located outside the area encapsulated by the seal ring. Electrical leads, which extend along outer side edges of the semiconductor cap structure from its front side to its back side, are coupled to the micro component via the bond pads.
摘要:
A package includes a sensor die with a micro component, such as a MEMS device, coupled to an integrated circuit which may include, for example, CMOS circuitry, and one or more electrically conductive bond pads near the periphery of the sensor die. A semiconductor cap structure is attached to the sensor die. The front side of the cap structure is attached to the sensor die by a seal ring to hermetically encapsulate an area of the sensor die where the micro component is located. The bond pads on the sensor die are located outside the area encapsulated by the seal ring. Electrical leads, which extend along outer side edges of the semiconductor cap structure from its front side to its back side, are coupled to the micro component via the bond pads.
摘要:
A camera module includes an image sensor substrate including image sensor circuitry, and a lens barrel. A lid structure includes a transparent window and is disposed between, and attached to, the lens barrel and the image sensor substrate. The lid structure may be fabricated as part of a wafer-level process.
摘要:
The substrate includes an alignment slot in at least one of its side edges, and includes metallization coupled electrically to the micro component and extending from the front surface of the substrate to its back surface via at least one of the alignment slots. The assembly also includes a cover attached to the substrate so as to encapsulate the micro component. The cover includes at least one protrusion on its underside such that each protrusion mates with a respective alignment slot in the side edges of the substrate.