摘要:
A waveguide structure includes a substrate. A layer of high index material includes polysilane, which is patterned using a UV light source to form a waveguide.
摘要:
An optical structure includes a substrate having two side surfaces. A first layer of high refractive index material is formed on the substrate. A sacrificial layer is formed on the first layer. A second layer of high refractive index material is formed on the sacrificial layer. At a predefined temperature the sacrificial layer is evaporated, thus forming an air gap between the first layer and the second layer.
摘要:
Remarkably, disclosed herein is a solvent-less chemical vapor deposition (CVD) method for the oxidative polymerization and deposition of thin films of electrically-conducting polymers. In a preferred embodiment, the method provides poly-3,4-ethylenedioxythiophene (PEDOT) thin films. In other embodiments, the method is applicable to polymerization to give other conducting polymers, such as polyanilines, polypyrroles, polythiophenes and their derivatives. The all-vapor technique uses a moderate substrate temperature, making it compatible with a range of materials, including as fabric and paper. In addition, this method allows for the coating of high surface-area substrates with fibrous, porous and/or particulate morphologies. The coated substrates may be used in organic semiconductor devices, including organic light-emitting diodes (OLEDs), photovoltaics, electrochromics, and supercapacitors.
摘要:
Disclosed are methods of preparing antifouling and chlorine-resistant coatings on reverse osmosis membranes with initiated chemical vapor deposition. The coatings enhance the stability and lifetime of membranes without sacrificing performance characteristics, such as permeability or salt retention.
摘要:
Disclosed are methods of preparing antifouling coatings on reverse osmosis membranes with initiated vapor deposition or oxidative vapor deposition. The coatings enhance the stability and lifetime of membranes without sacrificing performance characteristics, such as permeability or salt retention.
摘要:
One aspect of the invention relates to an ultrathin micro-electromechanical chemical sensing device which uses swelling or straining of a reactive organic material for sensing. In certain embodiments, the device comprises a contact on-off switch chemical sensor. For example, the device can comprises a small gap separating two electrodes, wherein the gap can be closed as a result of the swelling or stressing of an organic polymer coating on one or both sides of the gap. In certain embodiments, the swelling or stressing is due to the organic polymer reacting with a target analyte.
摘要:
Embodiments described herein are related to methods for processing substrates such as silicon substrates. In some cases, the method may provide the ability to passivate a silicon surface at relatively low temperatures and/or in the absence of a solvent. Methods described herein may be useful in the fabrication of a wide range of devices, including electronic devices such as photovoltaic devices, solar cells, organic light-emitting diodes, sensors, and the like.
摘要:
Described herein are reactors capable of sequentially or simultaneously depositing thin-film polymers onto a substrate by oxidative chemical vapor deposition (oCVD), initiated chemical vapor deposition (iCVD), and plasma-enhanced chemical vapor deposition (PECVD). The single-unit CVD reactors allow for the use of more than one CVD process on the same substrate without the risk of inadvertently exposing the substrate to ambient conditions when switching processes. Furthermore, the ability to deposit simultaneously polymers made by two different CVD processes allows for the exploration of new materials. In addition to assisting in the deposition of polymer films, plasma processes may be used to pretreat substrate surfaces before polymer deposition, or to clean the internal surfaces of the reactor between experiments.
摘要:
One aspect of the invention relates to an ultrathin micro-electromechanical chemical sensing device which uses swelling or straining of a reactive organic material for sensing. In certain embodiments, the device comprises a contact on-off switch chemical sensor. For example, the device can comprises a small gap separating two electrodes, wherein the gap can be closed as a result of the swelling or stressing of an organic polymer coating on one or both sides of the gap. In certain embodiments, the swelling or stressing is due to the organic polymer reacting with a target analyte.
摘要:
A light emitting device can have a layered structure and include a plurality of semiconductor nanocrystals. The layers of the device can be covalently bonded to each other. The device can include continuous chain of covalent bonds extending from the first electrode to the second electrode.