Abstract:
A non-wet processed tufted carpet (10) includes a plurality of face yarns (12), dyeable to the desired carpet color prior to tufting, which are tufted into and through a primary backing fabric (14) and which are more securedly held in place by a secondary backing fabric (16) without the use of an adhesive binder, the secondary backing fabric locking the face yarn in place upon the application of heat to a non-wet surface of the secondary backing fabric non-adjacent to the primary backing fabric. The tufted carpet (10) does not include any latex or binding adhesives which may cause odors or emit volatile organic chemicals. Moreover, the face yarn (12), primary backing fabric (14), and secondary backing fabric (16) are made of the same type of polymeric material, thereby creating a carpet which is wholly recyclable. The carpet (10) also uses only predyed fibers and yarns as the face yarn, thereby eliminating the need to dye or wet process and dry the carpet during its manufacture. The present invention also provides a non-wet processing method for the manufacture of tufted carpet.
Abstract:
An AC neutral bus electromotive power rectification unit includes a first coil unit and a second coil unit. The first coil unit includes a first conductive wire coil having a first end and an opposite second end. The conductive coil is disposed in a first non-conductive tube and is suspended in a ferrous matrix. The second coil unit includes a second conductive wire coil having a first end and an opposite second end. The first end of the second coil unit is electrically coupled to the first end of the first coil unit. The second coil unit is disposed in a second non-conductive tube and is surrounded by a non-conductive material.
Abstract:
Resistances of signal paths within a interconnect structure for linking input/output (I/O) ports of an integrated circuit (IC) tester to test points of an IC are measured by the IC tester itself. To do so the interconnect structure is used to link the tester's I/O ports to a similar arrangement of test points linked to one another through conductors. Drivers within the tester, which normally transmit digital test signals to IC test points via the I/O ports when the IC is under test, are modified so that they may also either transmit a constant current through the I/O ports or link the I/O ports to ground or other reference potential. The tester then transmits known currents though the signal paths interconnecting the tester's I/O ports. Existing comparators within the tester normally used to monitor the state of an IC's digital output signals are employed to measure voltage drops between the I/O ports, thereby to provide data from which resistance of signal paths within the interconnect structure may be computed.
Abstract:
A probe head for testing devices formed on a semiconductor wafer includes a plurality of probe DUT (device under test) arrays. Each device under test includes pads that are urged into pressure contact with probes in a corresponding probe DUT array. The probe arrays patterns have discontinuities such as indentations, protuberances, islands and openings that are opposite at least one device when the probes contact the pads.
Abstract:
A method for designing integrated circuits (ICs) and their interconnect systems includes IC component cells and interconnect component cells in a cell library. Each IC component cell provides both a physical and behavioral model of a component that may be incorporated into the IC while each interconnect component cell includes both a physical and behavioral model of a separate internal or external component of an interconnect system that may link the IC to external nodes. Both the IC and its interconnect systems are designed by selecting and specifying interconnections between component cells included in the cell library. Interconnect systems are flexibily designed to act like filters tuned to optimize desired frequency response characteristics. Behavior models of the IC and its interconnect systems, based on the behavior models of their selected component, are subjected to simulation and verification tools to determine whether the IC and its interconnect systems meet various performance criteria and constraints. The structural models of the interconnect systems developed during the design process guide subsequent fabrication of interconnect systems for both the IC's intended testing and operating environments.
Abstract:
A compatibilized silica for incorporation into natural and synthetic polymers in latex form or dry blending operations is described. Said compatibilized silica is formed by the reaction of precipitated or fumed silica with organosilicon coupling compounds in aqueous suspension. Polymer-silica reinforced masterbatches are prepared by addition of the compatibilized silica slurry to natural and synthetic polymer latices. Also described is a process for preparing the compatibilized silica.
Abstract:
Resistances of signal paths within a interconnect structure for linking input/output (I/O) ports of an integrated circuit (IC) tester to test points of an IC are measured by the IC tester itself. To do so the interconnect structure is used to link the tester's I/O ports to a similar arrangement of test points linked to one another through conductors. Drivers within the tester, which normally transmit digital test signals to IC test points via the I/O ports when the IC is under test, are modified so that they may also either transmit a constant current through the I/O ports or link the I/O ports to ground or other reference potential. The tester then transmits known currents though the signal paths interconnecting the tester's I/O ports. Existing comparators within the tester normally used to monitor the state of an IC's digital output signals are employed to measure voltage drops between the I/O ports, thereby to provide data from which resistance of signal paths within the interconnect structure may be computed.
Abstract:
Resistances of signal paths within a interconnect structure for linking input/output (I/O) ports of an integrated circuit (IC) tester to test points of an IC are measured by the IC tester itself. To do so the interconnect structure is used to link the tester's I/O ports to a similar arrangement of test points linked to one another through conductors. Drivers within the tester, which normally transmit digital test signals to IC test points via the I/O ports when the IC is under test, are modified so that they may also either transmit a constant current through the I/O ports or link the I/O ports to ground or other reference potential. The tester then transmits known currents though the signal paths interconnecting the tester's I/O ports. Existing comparators within the tester normally used to monitor the state of an IC's digital output signals are employed to measure voltage drops between the I/O ports, thereby to provide data from which resistance of signal paths within the interconnect structure may be computed.
Abstract:
A process for the incorporation of silica into a polymer in latex in which a silica is treated with an organo silicon compound coupling agent in aqueous suspension to form a compatibilized silica and then contacting a polymer latex with the compatibilized silica whereby the silica becomes substantially uniformly distributed throughout the latex and can be recovered when the latex is coagulated to yield little residual silica in the liquid residue from the latex. Also described is a process for preparing the compatibilized silica.
Abstract:
An AC neutral bus electromotive power rectification unit includes a first coil unit and a second coil unit. The first coil unit includes a first conductive wire coil having a first end and an opposite second end. The conductive coil is disposed in a first non-conductive tube and is suspended in a ferrous matrix. The second coil unit includes a second conductive wire coil having a first end and an opposite second end. The first end of the second coil unit is electrically coupled to the first end of the first coil unit. The second coil unit is disposed in a second non-conductive tube and is surrounded by a non-conductive material.