摘要:
The present invention relates to formation of air gaps in metal/insulator interconnect structures, and to the use of supercritical fluid (SCF)-based methods to extract sacrificial place-holding materials to form air gaps in a structure. Supercritical fluids have gas-like diffusivities and viscosities, and very low or zero surface tension, so SCF's can penetrate small access holes and/or pores in a perforated or porous bridge layer to reach the sacrificial material. Examples of SCFs include CO2 (with or without cosolvents or additives) and ethylene (with or without cosolvents or additives). In a more general embodiment, SCF-based methods for forming at least partially enclosed air gaps in structures that are not interconnect structures are disclosed.
摘要:
A method for forming a multilayer interconnect structure on a substrate that include interconnected conductive wiring and vias spaced apart by a combination of solid or gaseous dielectrics. The inventive method includes the steps of: (a) forming a first planar via plus line level pair embedded in a dielectric matrix formed from one or more solid dielectrics and comprising a via level dielectric and a line level dielectric on a substrate, wherein, at least one of said solid dielectrics is at least partially sacrificial; (b) etching back sacrificial portions of said at least partially sacrificial dielectrics are removed to leave cavities extending into and through said via level, while leaving, at least some of the original via level dielectric as a permanent dielectric under said lines; (c) partially filling or overfilling said cavities with a place-holder material which may or may not be sacrificial; (d) planarizing the structure by removing overfill of said place-holder material; (e) repeating, as necessary, steps (a)-(d); (f) forming a dielectric bridge layer over the planar structure; and (g) forming air gaps by at least partially extracting said place-holder material.
摘要:
A method for forming a multilayer interconnect structure on a substrate that include interconnected conductive wiring and vias spaced apart by a combination of solid or gaseous dielectrics. The inventive method includes the steps of: (a) forming a first planar via plus line level pair embedded in a dielectric matrix formed from one or more solid dielectrics and comprising a via level dielectric and a line level dielectric on a substrate, wherein, at least one of said solid dielectrics is at least partially sacrificial; (b) etching back sacrificial portions of said at least partially sacrificial dielectrics are removed to leave cavities extending into and through said via level, while leaving, at least some of the original via level dielectric as a permanent dielectric under said lines; (c) partially filling or overfilling said cavities with a place-holder material which may or may not be sacrificial; (d) planarizing the structure by removing overfill of said place-holder material; (e) repeating, as necessary, steps (a)-(d); (f) forming a dielectric bridge layer over the planar structure; and (g) forming air gaps by at least partially extracting said place-holder material.
摘要:
A novel air-gap-containing interconnect wiring structure is described incorporating a solid low-k dielectric in the via levels, and a composite solid plus air-gap dielectric in the wiring levels. Also provided is a method for forming such an interconnect structure. The method is readily scalable to interconnect structures containing multiple wiring levels, and is compatible with Dual Damascene Back End of the Line (BEOL) processing.
摘要:
A method for providing regions of substantially lower fluorine content in a fluorine containing dielectric is described incorporating exposing a region to ultraviolet radiation and annealing at an elevated temperature to remove partially disrupted fluorine from the region. The invention overcomes the problem of fluorine from a fluorine containing dielectric reacting with other materials while maintaining a bulk dielectric material of sufficiently high or original fluorine content to maintain an effective low dielectric constant in semiconductor chip wiring interconnect structures.
摘要:
A method for treating a film of carbon-based dielectric material such as diamond-like carbon to remove volatiles is described. The method incorporates the steps of providing a non-oxidizing ambient and heating the film above 350.degree. C. Heating may be by rapid thermal annealing. The dielectric constant of the material may be lowered. A stabilized carbon-based material is provided with less than 0.5% thickness or weight change/hour at a selected temperature at or below 400.degree. C. The invention overcomes the problem of dimensional instability during the incorporation of the material in integrated circuit chips as an intra and inter level dielectric.
摘要:
The present invention relates to lithographic methods for forming a dual relief pattern in a substrate, and the application of such methods to fabricating multilevel interconnect structures in semiconductor chips by a Dual Damascene process in which dual relief cavities formed in a dielectric are filled with conductive material to form the wiring and via levels. The invention comprises a twice patterned single mask layer Dual Damascene process modified by the addition of an easy-to-integrate sidewall liner to protect organic interlevel and intralevel dielectrics from potential damage induced by photoresist stripping steps during lithographic rework. The invention further comprises a method for forming a dual pattern hard mask which may be used to form dual relief cavities for use in Dual Damascene processing, said dual pattern hard mask comprising a first set of one or more layers with a first pattern, and a second set of one or more layers with a second pattern.
摘要:
A novel air-gap-containing interconnect wiring structure is described incorporating a solid low-k dielectric in the via levels, and a composite solid plus air-gap dielectric in the wiring levels. Also provided is a method for forming such an interconnect structure. The method is readily scalable to interconnect structures containing multiple wiring levels, and is compatible with Dual Damascene Back End of the Line (BEOL) processing.
摘要:
A method for providing regions of substantially lower fluorine content in a fluorine containing dielectric is described incorporating exposing a region to ultraviolet radiation and annealing at an elevated temperature to remove partially disrupted fluorine from the region. The invention overcomes the problem of fluorine from a fluorine containing dielectric reacting with other materials while maintaining a bulk dielectric material of sufficiently high or original fluorine content to maintain an effective low dielectric constant in semiconductor chip wiring interconnect structures.
摘要:
The present invention relates to lithographic methods for forming a dual relief pattern in a substrate, and the application of such methods to fabricating multilevel interconnect structures in semiconductor chips by a Dual Damascene process in which dual relief cavities formed in a dielectric are filled with conductive material to form the wiring and via levels. The invention comprises a twice patterned single mask layer Dual Damascene process modified by the addition of an easy-to-integrate sidewall liner to protect organic interlevel and intralevel dielectrics from potential damage induced by photoresist stripping steps during lithographic rework. The invention further comprises a method for forming a dual pattern hard mask which may be used to form dual relief cavities for use in Dual Damascene processing, said dual pattern hard mask comprising a first set of one or more layers with a first pattern, and a second set of one or more layers with a second pattern.