Abstract:
A battery module including bus bar cell interconnects and a method of manufacture are provided. The battery module may, in certain embodiments, include a housing, a plurality of battery cells disposed in the housing, and a bus bar cell interconnect. The bus bar cell interconnect is designed to electrically couple a first battery cell and a second battery cell. In some embodiments, the bus bar cell interconnect includes a first end electrically coupled with a first terminal of the first battery cell and a second end electrically coupled with a second terminal of the second battery cell. The bus bar cell interconnect also includes a curved portion disposed between the first end and the second end, and the bus bar cell interconnect is designed to distribute stress across the curved portion.
Abstract:
A printed circuit board (PCB) assembly includes a PCB and a high current interconnect mounted on the PCB. The high current interconnect is configured to electrically couple a first high current bladed component, a second high current bladed component, and a trace disposed on the PCB. The high current interconnect includes feet made of a conductive material that are coupled to the PCB. The trace is coupled to the feet via a weld.
Abstract:
A bus bar including a first end comprising a first material and a second end comprising a second material and a method of manufacture are provided. The first end is designed to be coupled to a terminal of a first battery cell of a battery module and includes a first collar disposed on the first end designed to receive and surround the terminal of the first battery cell of the battery module. The second end is designed to be coupled to a terminal of a second battery cell of the battery module and includes a second collar disposed on the second end designed to receive and surround the terminal of the second battery of the battery module. The first and second batteries of the battery module are adjacent to one another. Moreover, the bus bar includes a joint electrically and mechanically coupling the first end and the second end.
Abstract:
A battery module includes a housing configured to hold prismatic battery cells within a space defined by four interior walls of the housing. The housing includes a first interior wall that includes partitions extending upwards from a bottom of the housing and a second interior wall that includes partitions extending upwards from the bottom of the housing. The first interior wall faces opposite the second interior wall. The partitions disposed on the first interior wall and the partitions disposed on the second interior wall define slots between adjacent partitions, where each of the slots increases in width between the adjacent partitions from the bottom of the housing upwards. Each of the slots is configured to retain one of the prismatic battery cells.
Abstract:
A system includes a lid disposed over battery cells in a battery module. The lid includes flexible fingers, and each of the flexible fingers aligns with a corresponding one of the battery cells. Each of the flexible fingers is configured to exert a downward force against the corresponding one of the battery cells, and the flexible fingers are configured to accommodate varying heights of the battery cells.
Abstract:
A terminal for a battery module and a method of manufacture of the terminal are provided. The battery module may include a plurality of battery cells and a bus bar. The bus bar may be electrically coupled to the plurality of battery cells. The battery module also may include a battery terminal that carries a voltage from the bus bar. The battery terminal may include a generally cylindrical terminal portion and a connector. The connector may be coupled to the bus bar cell interconnect. The battery terminal also may include a bent portion. The bent portion is disposed between the terminal portion and the connector.
Abstract:
A battery module and a method of manufacture are provided. The battery module may include a printed circuit board (PCB) assembly. The PCB assembly may include a PCB designed to be disposed in a battery module for controlling operations of the battery module. The PCB may also include voltage sensing circuitry. In addition, the PCB assembly may include a bus bar cell interconnect. The bus bar cell interconnect may electrically couple batteries of the battery module. The PCB assembly may also include a voltage sense connection tab. The voltage sense connection tab may carry a voltage between a bus bar cell interconnect of the battery module and the voltage sensing circuitry on the PCB.
Abstract:
A battery module and a method of manufacture are provided. The battery module may include a printed circuit board (PCB) assembly. The PCB assembly may include a PCB designed to be disposed in a battery module for controlling operations of the battery module. The PCB may also include voltage sensing circuitry. In addition, the PCB assembly may include a bus bar cell interconnect. The bus bar cell interconnect may electrically couple batteries of the battery module. The PCB assembly may also include a voltage sense connection tab. The voltage sense connection tab may carry a voltage between a bus bar cell interconnect of the battery module and the voltage sensing circuitry on the PCB.
Abstract:
A terminal for a battery module and a method of manufacture of the terminal are provided. The battery module may include a plurality of battery cells and a bus bar. The bus bar may be electrically coupled to the plurality of battery cells. The battery module also may include a battery terminal that carries a voltage from the bus bar. The battery terminal may include a generally cylindrical terminal portion and a connector. The connector may be coupled to the bus bar cell interconnect. The battery terminal also may include a bent portion. The bent portion is disposed between the terminal portion and the connector.
Abstract:
A lid assembly for use in a battery module includes a lid with apertures extending through the lid in a vertical direction, where each of the apertures is configured to receive a terminal of a battery cell of the battery module. The lid assembly also includes one or more extensions extending away from the lid in the vertical direction. Each of the one or more extensions is configured to couple the lid to a printed circuit board assembly of the battery module. The lid assembly also includes walls extending away from the lid in the vertical direction. Each of the walls is configured to extend between a first terminal of a first battery cell and a second terminal of a second battery cell.